A 3-Dimentional Numerical Analysis of Solar-Panel-Chimney for House Ventilation

2013 ◽  
Vol 483 ◽  
pp. 149-153
Author(s):  
Song Hao Wang ◽  
Chih Sheng ◽  
Huann Ming Chou ◽  
Shun Chih Yu

3-dimentional CFD Numerical analyses were conducted. Major dimensional parameters were considered in the simulation and meaningful air flow rates were observed under normal conditions. to fully understand the physical mechanism of the phenomenon by air buoyancy. Based on the results of the study, the proposed solar panel chimney and its advantages are worth of further investigation. Based on this innovative concept, the rooftop solar panel could be re-arranged, grouped and boxed to form an effective solar panel chimney, to serve as passive ventilation system without much cost and fully utilize the solar power.

2013 ◽  
Vol 422 ◽  
pp. 118-122 ◽  
Author(s):  
Song Hao Wang ◽  
Chih Sheng ◽  
Huann Ming Chou ◽  
Edgar J. Tobias Corado

A concept of solar chimney utilizing solar panels for building passive ventilation is proposed in this paper. First, CFD Numerical analyses were conducted to test the feasibility. Major dimensional parameters were considered in the simulation and meaningful air flow rates were observed under normal conditions. Experiments were conducted to confirm the concept and to understand the physical mechanism of the phenomenon by air buoyancy. Based on the results of the study, the proposed solar panel chimney and its advantages are worth of further investigation. Based on this innovative concept, the rooftop solar panel could be re-arranged, grouped and boxed to form an effective solar panel chimney, to serve as passive ventilation system without much cost and fully utilize the solar power.


2014 ◽  
Vol 25 (1) ◽  
pp. 180-190 ◽  
Author(s):  
Kun Woo Yi ◽  
Young Il Kim ◽  
Gwi-Nam Bae

Author(s):  
Kang-Woo Joo ◽  
Jun Young Kim ◽  
Kyu Tae Park ◽  
Kwang-Sun Kim

The regulations for environmental issues on the use of fossil energy and the upsurge of the power demand due to the improving standard of living worldwide increasingly require the development of renewable energy sources. In particular, developing countries suffer from severe lack of energy because they do not have technical ability for large-capacity generation facilities, such as thermal or nuclear power generation plants, and financial capacity to procure the resources. Therefore, most countries are trying to develop the renewable energy sources, especially the solar generation facilities. In the solar power generation system, the structural stability of the support unit that supports the large-area solar panel is essential to ensure the high generation efficiency and the long life of the system. According to the international standards and industry practice, the solar power system must be stable against the 120 km/h wind and its life must be 20 years or longer. The solar panel for the solar generation system are made by combining ten to several tens of solar modules depending on the scale of the system. This generates a load of at least 250 kg, and if the aerodynamic force due to the strong wind is additionally applied, the severe ground settlement of the support unit on the weak ground may damage the system. In this study, the structure of the solar power system, which can operate stably in the areas with weak ground, such as Laos and Vietnam, is proposed. Diverse load distributions and structure deformations were calculated via numerical analysis, and the typical ground characteristics of the subject areas were considered to determine the structure that minimizes the settlement.


Author(s):  
YUSUF OZBAKIS ◽  
FEHMI ERZINCANLI

Recent research has shown that particles in the air and harmful gases in the environment increase the risk of various respiratory diseases and mortality rates. For effective ventilation, particles and harmful gases in the environment must be captured before they are released into the environment. Air flow control valves (AFCVs) play an active role in the capture of particles and harmful gases in the environment with central ventilation system. In the study, an innovative AFCV, which is the most critical part of central ventilation systems, has been developed. Performance criteria in the innovative AFCV design have been the capture rate, the flow rate and turbulence intensity. In this study, six valves are designed as an alternative to the current valve. The designed valves were mounted on the central ventilation system hood and numerical analysis was performed. ANSYS Fluent software was used for the analysis. The best and worst valves were determined as a result of numerical analysis. Prototypes of the determined valves were created and experimental verification tests were carried out. Again, numerical analyses simulating the experimental tests were performed with these two valves. The experimental test results and numerical analysis results were compared. As a result, due to the innovative AFCV design, the air flow and the capture speed have been increased and the turbulence intensity has been reduced.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 134-135
Author(s):  
Michaela B Braun ◽  
Kara M Dunmire ◽  
Michael Sodak ◽  
Jerry Shepherd ◽  
Randy Fisher ◽  
...  

Abstract This study was performed to evaluate hammermill tip speed, assistive airflow and screen hole diameter on hammermill throughput and characteristics of ground corn. Corn was ground using two Andritz hammermills (Model: 4330–6, Andritz Feed & Biofuel, Muncy,PA) measuring 1-m in diameter each equipped with 72 hammers and 300 HP motors. Treatments were arranged in a 3 × 3 × 3 factorial design with 3 tip speeds (3,774, 4,975, and 6,176 m/min), 3 screen hole diameters (2.3, 3.9 and 6.3 mm), and 3 air flow rates (1,062, 1,416, and 1,770 fan RPM). Corn was ground on 3 separate days to create 3 replications and treatments were randomized within day. Samples were collected and analyzed for moisture, particle size, and flowability characteristics. Data were analyzed using the GLIMMIX procedure of SAS 9.4 with grinding run serving as the experimental unit and day serving as the block. There was a 3-way interaction for standard deviation (Sgw), (linear screen hole diameter × linear hammer tip speed × linear air flow, P = 0.029). There was a screen hole diameter × hammer tip speed interaction (P < 0.001) for geometric mean particle size dgw (P < 0.001) and composite flow index (CFI) (P < 0.001). When tip speed increased from 3,774 to 6,176 m/min the rate of decrease in dgw was greater as screen hole diameter increased from 2.3 to 6.3 mm resulting in a 67, 111, and 254 µm decrease in dgw for corn ground using the 2.3, 3.9, and 6.3 mm screen hole diameter, respectively. For CFI, increasing tip speed decreased the CFI of ground corn when ground using the 3.9 and 6.3 mm screen. However, when grinding corn using the 2.3 mm screen, there was no evidence of difference in CFI when increasing tip speed. In conclusion, the air flow rate did not influence dgw of corn but hammer tip speed and screen size were altered and achieved a range of dgw from 304 to 617 µm.


Solar Energy ◽  
1986 ◽  
Vol 37 (5) ◽  
pp. 363-374 ◽  
Author(s):  
C. Karakatsanis ◽  
M.N. Bahadori ◽  
B.J. Vickery

Sign in / Sign up

Export Citation Format

Share Document