Research of Pipe Made of Cu-Zn-Si Shape Memory Alloy to Internally Sprayed Pipe Connection in Connected Technology

2014 ◽  
Vol 484-485 ◽  
pp. 105-109
Author(s):  
Shao Yun An

The copper-based shape memory alloy pipe joint was applied in the field of oil pipelines jointing as well as installing. It has many advantages than anything. In the paper, the basic principle and connection influence factors of copper-based shape memory alloy pipe joint were described. Experimental results shows the copper-based shape memory alloy pipe joints can be used in oilfield oil pipeline connection and it can solve the inner pipe joint corrosion damage problem by welding.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022072
Author(s):  
Yun Tian ◽  
Qi Yao ◽  
Dong Jiang ◽  
Yanni Xiao ◽  
Licheng Liu ◽  
...  

Abstract Aiming at the leakage phenomenon of pipeline system due to corrosion and other reasons, a split type iron-based shape memory alloy pipe joint based on the button bond connection was designed for repair. This split-type pipe joint can be used for quick in-situ maintenance of pipelines without cutting off pipelines or stopping transmission without pressure relief. It is especially suitable for intensive pipeline maintenance and online emergency maintenance. In order to study the connection performance of the split iron-based shape memory alloy pipe joint, this paper took the Fe17Mn4Si10Cr4Ni alloy pipe joint as the research object, and carried out pressure sealing and pull-out experiments respectively on the integral pipe joint and the split pipe joint which had not been carried out and had been subjected to one heat and mechanical training. The results showed that, compared with the integral pipe joint, the pressure seal value of the split pipe joint decreased by 40% to 20MPa and the pulling force decreased by 48.9% without heat-mechanical training. However, after 1 time of thermal-mechanical training, the pressure sealing value of the split-type pipe joint decreased by 12.5% to 32MPa and the pulling force decreased by 21.2% compared with the integral pipe joint. It can be seen that thermal-mechanical training can significantly improve the joint performance of split pipe joints, and the split pipe joint can meet the requirements of medium and low pressure pipeline connection and maintenance.


2014 ◽  
Vol 1006-1007 ◽  
pp. 845-848
Author(s):  
Yong Zhi Cai

The study explores the vibration sensing effect of Ni-Mn-Ga shape memory alloy, based on the experimental results, researched the characteristics of this alloy applied in mechanical vibration signal sensors, and describes the feasibility of this alloy used for vibration measurements.


2009 ◽  
Vol 79-82 ◽  
pp. 1209-1212
Author(s):  
Shuang Shuang Sun ◽  
Jing Dong

Based on experimental results reported in the reference, Liang-Rogers’ constitutive model for SMA is used to simulate the stress-strain curves of NiTi shape memory alloy films under uniaxial tension with isothermal conditions. The effects of film compositions and temperature on the tensile behavior of NiTi shape memory alloy films are discussed. By comparing the simulation results with the experimental results, it is found that the simulation curves agree basically with the experimental curves except that the phase-transformation regions are wider in the simulation curves. This demonstrates that the Liang-Rogers’ model can be used to predict the thermomechanical behavior of shape memory alloy films roughly. This study provides some theoretical foundation for the quantitative description and prediction of the actuation mechanism when shape memory alloy films are used as micro-actuators.


Aerospace ◽  
2004 ◽  
Author(s):  
Mohammad H. Elahinia ◽  
Mehdi Ahmadian

The phenomenological models for SMAs, consisting of a thermodynamics based- constitutive and a phase transformation kinetics model, are the most widely used models for engineering applications. The existing phenomenological models are able to predict the behavior of SMA-actuated systems in most cases, except for cases arising from a simultaneous change in temperature and stress of the SMA elements, as is documented in this study. For such cases, the existing models fail to adequately predict the behavior of SMA elements undergoing complex thermomechanical loadings. A rotary SMA-actuated robotic arm is modeled using the existing constitutive models, in order to document the conditions under which the models fail. The model is verified against the experimental results, to document that under certain conditions, the model is not able to predict the behavior of the SMA-actuated manipulator. The phenomenological models discrepancy is also studied experimentally using a dead-weight that is actuated by an SMA wire.


Author(s):  
Saeid Shakiba ◽  
Mohammad Reza Zakerzadeh ◽  
Moosa Ayati

In this article, two models are used, namely rate-independent and rate-dependent generalized Prandtl–Ishlinskii, to characterize a magnetic shape memory alloy actuator. The results show that the rate-independent model cannot consider the effect of input excitation frequency, while the rate-dependent model omits this drawback by defining a time-dependent operator. For the first time, the effects of excitation frequency on the hysteretic behavior of magnetic shape memory alloy actuator are investigated. In this study, five excitation voltages with different frequencies in the range of 0.05–0.4 Hz are utilized as inputs to the magnetic shape memory alloy actuator and the displacement outputs are measured. Experimental results indicate that, with increasing the excitation frequency, the size of the hysteresis loops changes. Since the generalized rate-dependent Prandtl–Ishlinskii model cannot consider the asymmetric hysteresis loops, in the developed model, a tangent hyperbolic function is applied as an envelope function in order to improve the capability of the model in characterizing the asymmetric behavior of magnetic shape memory alloy actuator. The parameters of both rate-dependent and rate-independent models are identified by genetic algorithm optimization. The results reveal that the rate-independent form is not capable of accurately describing the hysteretic behavior of magnetic shape memory alloy actuator for different input frequencies. Simulation and experimental results also demonstrate the proficiency of the developed model for precise characterization of the saturated rate-dependent hysteresis loops of magnetic shape memory alloy actuator. In addition, the proposed model is utilized for determining a proper range for controller coefficients during controller design.


Author(s):  
Saeid Shakiba ◽  
Aghil Yousefi-Koma ◽  
Mehdi Jokar ◽  
Mohammad Reza Zakerzadeh ◽  
Hamid Basaeri

Unique features of shape memory alloys make them a proper actuation choice in various control systems. However, their nonlinear hysteresis behavior negatively affects wide utilization of such materials in structure actuation. In this study, the frequency effect on the hysteresis behavior of a shape memory alloy–actuated structure is experimentally investigated, and also two proposed versions of rate-dependent Prandtl-Ishlinskii (modified rate-dependent Prandtl-Ishlinskii and revised modified rate-dependent Prandtl-Ishlinskii) are presented, which are capable of characterizing this phenomenon. Experimental results show that increasing excitation frequency leads to bigger hysteresis loops. It is also proven that rate-dependency cannot be predicted by generalized Prandtl-Ishlinskii model. In addition, a comparison between the dead zone function-based rate-dependent Prandtl-Ishlinskii model as an only benchmark model and the proposed models have been done that proves the proposed models’ superiority. In addition, genetic algorithm is exploited to identify unknown parameters of all models. Trained models performance is also experimentally evaluated at different input frequencies. Comparison between simulation and experimental results indicates that the proposed models can reliably predict saturated, asymmetric, rate-dependent hysteresis behavior, and minor loops in shape memory alloy–embedded actuators.


2015 ◽  
Vol 4 (3) ◽  
pp. 96-100 ◽  
Author(s):  
Wei Wang ◽  
Bo Wang ◽  
Ji-Yuan Liu ◽  
Hong Hai

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiang Chen ◽  
Bin Chen ◽  
Xianghe Peng ◽  
Xiaoqing Jin ◽  
Ying Ma ◽  
...  

The assembling process of Ni47Ti44Nb9 alloy pipe joints considering the phase transformation and plasticity was numerically simulated for the first time with a developed constitutive model. The simulated process was based on the experimental material parameters, which were determined with the experimental tensile results of Ni47Ti44Nb9 shape memory alloy (SMA) and steel bars. The results showed that, after assembly, the Mises stress distributed uniformly along the longitudinal direction of the NiTiNb joint, but nonuniformly along the radial direction. The maximum σeq does not appear at the inner wall of the joints due to the coupling effect of the plastic deformation and the recoverable transformation. The contact pressure distributed uniformly along the circumferential direction, but nonuniformly along the longitudinal direction. The sizes of the SMA joint and the pipe should be properly matched to ensure contact during the stage of the rapid reverse phase transformation to obtain stable connection performance. The pull-out force was also computed, and the results were in good agreement with the experimental results. The results obtained can provide available information for the optimization of the design parameters of the high-performance SMA pipe-joint, such as inner diameter and assembly clearance.


2018 ◽  
Vol 18 (01) ◽  
pp. 1750064 ◽  
Author(s):  
MINGHUI WANG ◽  
HONGLIU YU ◽  
BAOLIN LIU ◽  
LIANGFAN ZHU ◽  
YUN LUO

Constant force component is very useful in medical device, such as forceps with constant force, which may prevent soft tissues from injures due to overloading. This paper studied the optimization procedure in constant force component for superelastic shape memory alloy, and tried to find the rule of obtaining constant force within a relatively large deformation range for superelastic C-shaped shape memory alloy sheet. The optimization concept of combing finite element analysis in ANSYS with genetic algorithm in MATLAB was presented for designing constant force component using superelastic SMA. The computational optimization and experimental results of the C-shaped shape memory alloy sheet showed that the proposed optimization method was potential for superelastic shape memory alloy. The optimization results were consistent with the experimental results. It was demonstrated that constant force could be obtained within a relatively large deformation range by varying the initial shape of the superelastic SMA component.


Sign in / Sign up

Export Citation Format

Share Document