Analysis of the Open-Pit to Underground Mining Slope Stability

2014 ◽  
Vol 484-485 ◽  
pp. 599-603
Author(s):  
Guang Ming Bao ◽  
Juan Chang ◽  
Zhi Gang Liu

This paper uses the simulation technology of computer numerical simulation, combined with the GAMBIT numerical modeling software and ANSYS structure analysis software, we carry out an in-depth research and analysis on the stability of engineering simulation, at the same times establish the mathematical model of ANSYS numerical simulation displacement stability and design the ANSYS command stream program algorithm. Finally, this paper uses the open-pit to underground mining slope stability as an example, to verify the reliability of the model and algorithm. Through the numerical simulation, we get the displacement of slope in the Y direction and Z direction. In the Y direction, the maximum displacement is 0m, the negative maximum displacement is 5.88m and displacement is relatively large; in the Z direction, the maximum displacement is 1.32M, the negative maximum displacement is 1.08M and the stability of slope is different in different position. The numerical simulation provides the theory reference for the safety of mining engineering.

2013 ◽  
Vol 634-638 ◽  
pp. 3277-3281 ◽  
Author(s):  
Shi Guo Sun ◽  
Hong Yang ◽  
Chun Sheng Li ◽  
Bao Lin Zhang ◽  
Jia Wang ◽  
...  

The stability state of slope rock mass is relating to each other’s relative location during the transformation from open-pit to underground mining, it’s the most disadvantageous influence on the slope stability when the underground mining area is located in the toe of slope, and it’s the best influence as in the slope extracellular region. Slope stability factor changes with the geometric dimensions of underground mining increased, but not in direct proportion. Under the condition of constant geometric dimensions of mining area, the influence on slope stability is changing with the mining depth increased. Thus indicating that the influence on slope stability by underground mining has its spatial property, and to determine the specific influence value requires a combination of many factors, such as the relationship of relative spatial position, the geometric dimensions of mining area, engineering geological conditions and so on.


2013 ◽  
Vol 807-809 ◽  
pp. 2371-2377
Author(s):  
Guang Yi Sun ◽  
Xiao Luo

This paper analysis open-pit coal mine slope stability in the first mining with FLAC3D, reveal the mechanism of slope deformation, through analysis the stress and strain nephogram of model ZK8 of the first mining slope, and calculation safety stability coefficient, finally concluding stope slope of the first mining occur slip as circular form under their own gravity. The safety factor of model ZK8 is more than stope slope safety coefficient 1.20, slope is in steady state, obtained the accurate and reliable analysis results of stability.


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 


2011 ◽  
Vol 422 ◽  
pp. 688-692
Author(s):  
Xiao Hei He ◽  
Geng You Han ◽  
Rui Hua Xiao

Abstract:Since the Wenchuan earthquake happened, the slope stability had been paid much more attention. The safety factor is an important parameter that can be used to evaluate the stability of slope. The pseudo-static method that based on limit equilibrium and the method of numerical simulation can calculate the safety factor accurately, but the velocity that gets the result is slow. If we can establish the relationship between safety factor and some other parameters, then we can calculate the safety factor by using the relationship more quickly. This paper establishes much relationship, such as the relationship between the rock mechanics parameters and the average danymic safety factor, the relationship between the rock mechanics parameters and the ratio of average danymic safety factor to static safety factor, the relationship between the rock mechanics parameters and the average earthquake acceleration coefficient, the relationship between the average earthquake acceleration coefficient and the ratio of average danymic safety factor to static safety factor, and the relationship between the earthquake acceleration coefficient and the ratio of danymic safety factor to static safety factor on the condition of different rock mass.


2020 ◽  
Vol 4 (3) ◽  
pp. 196
Author(s):  
Dhrubo Haque ◽  
Md Isteak Reza

This paper has aimed to investigate the slope stability for various conditions like embankment geometry, water level and soil property. The analysis has been performed by using the XSTABL program for different slope heights, slope angles and flood conditions with a fixed soil cohesion value. Since the rapid drawdown is the worst case for a particular embankment therefore, the analysis has been further performed with different cohesion values. From this investigation it has been noticed that the increase of cohesion of soil can increase the stability to a great extent. All the analysises have been performed for twenty bore logs. It has been found that the underlying soil affects the stability of slope as the failure surface intersects the soil of this region. It has been also observed that the loose, liquefiable sandy soil decreases the stability while the stiff soil with sufficient cohesion value stabilizes the slope of embankment.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 


Author(s):  
Tumelo K. M. Dintwe ◽  
Takashi Sasaoka ◽  
Hideki Shimada ◽  
Akihiro Hamanaka ◽  
Dyson N. Moses ◽  
...  

2011 ◽  
Vol 84-85 ◽  
pp. 729-732 ◽  
Author(s):  
Jun Guo ◽  
De Qing Gan ◽  
Yu Zhang ◽  
Wei Hang Zhang

The paper analyzed major factors that influence the stability of open-pit slope and established the GM (1, N) model based on the program of Xingshan strip mine, which provided an effective method for evaluating the slope stability.


2011 ◽  
Vol 255-260 ◽  
pp. 3822-3826 ◽  
Author(s):  
Zhi Yu Zhang ◽  
Long Fa Luan ◽  
Ji Yao ◽  
Jian Bin Xie ◽  
Xiang Long Li

Based on the hydrological, geologies and slope features of Jianshan phosphate mine in Yunnan province, the geomechanics model of slope was established. Then the static stability of different elevations in mining section was studied by using methods such as the rigid body limit equilibrium method, finite element method, continuum large deformation Lagrange element method. According to the supervise data of the mining blasting, the dynamic response of the slope in blasting was studied by continuum large deformation Lagrange element method, and some suggestions were proposed for following mining blasting. The research results show that the slope was in the stable status before blasting vibration. Current mining blasting vibration has little effect on the stability of slope, but would reduce the safety factor of the top of the slope. Single blasting would enlarge the instantaneous acceleration of the top of the slope in a ratio of 8.8% and 10.8%.


2014 ◽  
Vol 926-930 ◽  
pp. 593-596
Author(s):  
Fang Wang ◽  
Chong Shi ◽  
Kai Hua Chen ◽  
De Jie Li ◽  
Ke Han

The process of open-pit mining can lead to high slopes in iron mines, and natural slopes should be rebuilt by the method of roof fall as the exploitation style turns from open-pit mining to the underground mining. So the slope can be steep, deep and may has the characteristics of collapse. It is difficult to describe the stabilization of the mining slope by a conventional safety factor method. Through the numerical simulation of underground mining process, this paper analyzes the result of distortion stress and rock movement rupture range. Studies have shown that the failure mode is dominated by tensile failure as a pattern of collapse and few is dominated by shear failure. The failure zone is controlled by rock mass parameters and structures. The results can be helpful for the proposition of exploitation program and safety management design.


Sign in / Sign up

Export Citation Format

Share Document