10 kw Vertical Axis Wind Turbine Spindle Design and Optimization

2014 ◽  
Vol 487 ◽  
pp. 429-434 ◽  
Author(s):  
Qiao Mei Li ◽  
Yang Cao ◽  
Guo Qing Wu ◽  
Xing Hua Chen ◽  
Yan Hua Cao

The spindle of a 10 kw vertical axis wind turbine is designed in this paper, and the relevant geometric parameters is given, and build the geometry of the finite element model. Calculation of the spindle under wind load and dead weight , and analyse the spindle Von Mess stress, deformation nephogram, and give the former six order vibration mode of the spindle. Through the analysis, Then the design parameters of the spindle are optimized. and the optimized structure of spindle has been got. optimized spindle is in lower quality, more satisfy the requirement of wind turbine running under high load at the same time .

2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Author(s):  
Carlos Xisto ◽  
José Páscoa ◽  
Michele Trancossi

In the paper, four key design parameters with a strong influence on the performance of a small-scale high solidity variable pitch VAWT (Vertical Axis Wind Turbine), operating at low tip-speed-ratio (TSR) are addressed. To this aim a numerical approach, based on a finite-volume discretization of two-dimensional Unsteady RANS equations on a multiple sliding mesh, is proposed and validated against experimental data. The self-pitch VAWT design is based on a straight blade Darrieus wind turbine with blades that are allowed to pitch around a feathering axis, which is also parallel to the axis of rotation. The pitch angle amplitude and periodic variation are dynamically controlled by a four-bar-linkage system. We only consider the efficiency at low and intermediate TSR, therefore the pitch amplitude is chosen to be a sinusoidal function with a considerable amplitude. The results of this parametric analysis will contribute to define the guidelines for building a full size prototype of a small scale turbine of increased efficiency.


The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


Author(s):  
H. D. Morgan ◽  
S. A. Rolland ◽  
J. Sienz ◽  
A. J. Gil ◽  
D. C. Bould ◽  
...  

Author(s):  
Sandeep S. Wangikar ◽  
Nitin D. Misal

Renewable energy generation in the rural environment has been receiving an increased attention over the recent years due to the proximity with the point of use. This paper presents the effect of design parameters on the performance of a Shutter Type Vertical Axis Wind Turbine (STVAWT). A STVAWT has been designed, manufactured and tested. The turbine performance has been investigated by varying the design parameters such as shutter angle and form of the shutter. The results were used for the comparison between the performance achieved while changing the design parameters. Significant numbers of experiments have been performed by changing the above mentioned parameters for different wind speeds. The effect of each parameter on the torque and power has been analyzed. It has been found that the shutter angle has a significant effect on the power of the turbine. The maximum power obtained in this investigation was 103 watts using a turbine with radius 150 cm, height 45 cm, shutter angle 30 degree and curved shutter form. The torque and power increases with increase in shutter angle up to 30 degree starting from 12 degree and then decreases with increase in shutter opening angle up to 48 degree. From this investigation, it is clear that the newly developed STVAWT is working efficiently at 30 degree shutter opening angle and the curved shutter form is found to be more efficient as compared to the straight shutter form.


Author(s):  
Joseph Saverin ◽  
David Marten ◽  
David Holst ◽  
George Pechlivanoglou ◽  
Christian Oliver Paschereit ◽  
...  

The evolution of the wake of a wind turbine contributes significantly to its operation and performance, as well as to those of machines installed in the vicinity. The inherent unsteady and three-dimensional aerodynamics of Vertical Axis Wind Turbines (VAWT) have hitherto limited the research on wake evolution. In this paper the wakes of both a troposkien and a H-type VAWT rotor are investigated by comparing experiments and calculations. Experiments were carried out in the large-scale wind tunnel of the Politecnico di Milano, where unsteady velocity measurements in the wake were performed by means of hot wire anemometry. The geometry of the rotors was reconstructed in the open-source wind-turbine software QBlade, developed at the TU Berlin. The aerodynamic model makes use of a lifting line free-vortex wake (LLFVW) formulation, including an adapted Beddoes-Leishman unsteady aerodynamic model; airfoil polars are introduced to assign sectional lift and drag coefficients. A wake sensitivity analysis was carried out to maximize the reliability of wake predictions. The calculations are shown to reproduce several wake features observed in the experiments, including blade-tip vortex, dominant and submissive vortical structures, and periodic unsteadiness caused by sectional dynamic stall. The experimental assessment of the simulations illustrates that the LLFVW model is capable of predicting the unsteady wake development with very limited computational cost, thus making the model ideal for the design and optimization of VAWTs.


Sign in / Sign up

Export Citation Format

Share Document