Fuzzy Based Intelligent Approach to AGC of Multi-Area Multi-Unit Power System with SMES under Random Load Disturbances

2014 ◽  
Vol 492 ◽  
pp. 431-438
Author(s):  
Sathans Suhag ◽  
A. Swarup

In reality, load variations in power systems are random in nature. Therefore, the automatic generation control (AGC) performance of the power system needs to be investigated under random load disturbances so as to have a realistic evaluation of the control strategy. This paper reports results for one such investigation. The intelligent control strategy, based on fuzzy gain scheduling of a proportional-integral (PI) controller, is developed and implemented for a multi-area multi-unit thermal power system with reheat nonlinearity. The paper also investigates the effect of superconducting magnetic energy storage (SMES) system on the AGC performance. For the sake of comparison, the behavior of the system for the same load disturbance is also investigated with a conventional PI controller. Simulation studies indicate that the proposed intelligent control strategy is very effective under random load disturbances and provides significant improvement over the conventional PI controller.

Author(s):  
K. Jagatheesan ◽  
B. Anand ◽  
Nilanjan Dey ◽  
Amira S. Ashour

Load changes in any one of interconnected power system that influence the system response from their nominal values. The Proportional–Integral- Derivative (PID) controller is employed to mitigate this issue as a secondary controller in addition to the Superconducting Magnetic Energy Storage (SMES) unit. In Automatic Generation Control (AGC), the current work proposed an Ant Colony Optimization (ACO) technique to tune PID controller gain values of multi-area interconnected thermal power system. The gain value of PID controller is tuned by using the ACO techniques. The system response is compared with and without considering SMES unit in the system. The comparative results clearly established that the system response with SMES unit improve the performance of system during sudden load disturbance.


2003 ◽  
Vol 40 (2) ◽  
pp. 130-143 ◽  
Author(s):  
C. Palanichamy ◽  
C. Anil Kumar ◽  
Sundar Babu

This paper presents a Windows™-based educational package developed by the authors to provide power systems students with basic training on the environmentally friendly, economic operation of power systems. The suitability of the package has been demonstrated here with the help of a six-generator thermal power system.


Automatic Generation Control of two area multi unit interconnected thermal power system with dynamic participation of Doubly Fed Induction Generator based on the wind turbines. In this work two areas consisting of three unequal turbines both areas are connected to the DFIG based wind turbine. Area 1 consisting of three reheat turbines with Doubly Fed Induction Generator based on wind turbine and area2 consisting of three non reheat turbines with Doubly Fed Induction Generator based on wind turbine and two areas interconnected by tie line. Two different controllers are used, namely PID and cascaded PD-PI controllers. The controllers effectively tuned by hybridization algorithm. 1% step load disturbance is applied in area 1 for analyzing the dynamic performance. The performance of two area multi-unit power system is done in MATLAB/SIMILINK software. The dynamic response of the considered system is compared in terms of undershoots, overshoot and settling times


2018 ◽  
Vol 7 (1) ◽  
pp. 22-49 ◽  
Author(s):  
Ajit Kumar Barisal ◽  
Deepak Kumar Lal

A novel attempt has been made to use Moth Flame Optimization (MFO) algorithm to optimize PI/PID controller parameters for AGC of power system. Four different power systems are considered in the present article. Initially, a two area thermal power system is considered for simulation. The superiority of the proposed MFO optimized PI/PID controller has been demonstrated by comparing the results with recently published approaches such as conventional, GA, BFOA, DE, PSO, Hybrid BFOA-PSO, FA and GWO algorithm optimized PI/PID controller for the same power system model. Then, a sensitivity analysis is carried out to study the robustness of the system to wide changes in the operating conditions and system parameters from their nominal values. The proposed approach is extended to different realistic multi-area multi-source power systems with diverse sources of power generations for simulation study. The acceptability and efficacy of the proposed technique is demonstrated by comparing with other recently published techniques.


2018 ◽  
Vol 26 (3) ◽  
pp. 11-24
Author(s):  
K. Jagatheesan ◽  
B. Anand

In this article, the optimal gain value of classical controller gain values is obtained by using different performance indices in Automatic Generation Control. These are interconnected by the three areas of a hydro-thermal power system. The thermal and hydro areas are incorporated with a reheat turbine and a mechanical governor, respectively. The current article was created to select a suitable technique for the tuning of controller gain, when 1% of a step load is given to the thermal area (Area 1). The performance of several controllers, such as Integral (I), Proportional-Integral (PI), and Integral-Derivative (ID) were evaluated and were compared to the cases of with and without Generation Rate Constraint (GRC) non-linearity. The classical controller gain value optimization was performed using the Integral Time Square Error (ITSE), Integral Square Error (ISE) and Integral Time Absolute Error (ITAE) performance indices. The minimum optimal value of controller gain normally offers better dynamic response. The obtained results established that the optimization based on the ITAE-PI controller always guarantees superior dynamic performances compared to other indices and controllers.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 446
Author(s):  
V. Shanmugasundaram ◽  
. .

This work presents the Automatic generation control in an interconnected hydro-thermal power system to stabilize the frequency oscillations due to load changes. Advantage of facts devices are utilized here to improve the stability of the system. Thyristor controlled phase shifter (TCPS) is added in the tie line whose input is the area control error. The output of the phase shifter is the change in phase angle based on the error. The TCPS-RFB (Redox flow battery) and TCPS - SMES (Superconducting magnetic energy storage) combinations are compared against each other in terms of peak overshoot and settling time. The results proves that SMES is most effective than RFB. Then the LFC of hydrothermal plant with TCPS in tie line and SMES in one area is analyzed with different controllers like P, PI, PID and Fuzzy logic controller to find the best controller for these specific applications. The criterion for comparison remains to be the same. And finally fuzzy logic controller is found to best among the ones under consideration.  


Sign in / Sign up

Export Citation Format

Share Document