A High-Throughput Imaging Spectrometer Based on Over-Scanning

2014 ◽  
Vol 519-520 ◽  
pp. 1247-1251
Author(s):  
Jiang Yue ◽  
Jing Han ◽  
Yi Zhang ◽  
Lian Fa Bai

We present a novel high-throughput imaging spectrometer based on over-scanning. The traditional slit-based spectrometer cannot gather enough radiation while the source is too weak. A much wider slit is used to replace the narrow one in traditional spectrometer. Too much wide slit will cause overlapping between different wavelength lights. In order to reconstruct super-resolution spectrum of source, over-scanning is employed which is realized by high precision electromechanical device. Experiments show that the reconstructed spectrum achieved a much higher resolution than original data meanwhile the throughput has improved significantly.

2017 ◽  
Author(s):  
Ziad Jowhar ◽  
Prabhakar Gudla ◽  
Sigal Shachar ◽  
Darawalee Wangsa ◽  
Jill L. Russ ◽  
...  

AbstractThe spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S97
Author(s):  
J. Bell ◽  
Y. Huang ◽  
S. Yung ◽  
H. Qazi ◽  
C. Hernandez ◽  
...  

2021 ◽  
Vol 7 (6) ◽  
pp. eabe3902
Author(s):  
Martin Rieu ◽  
Thibault Vieille ◽  
Gaël Radou ◽  
Raphaël Jeanneret ◽  
Nadia Ruiz-Gutierrez ◽  
...  

While crucial for force spectroscopists and microbiologists, three-dimensional (3D) particle tracking suffers from either poor precision, complex calibration, or the need of expensive hardware, preventing its massive adoption. We introduce a new technique, based on a simple piece of cardboard inserted in the objective focal plane, that enables simple 3D tracking of dilute microparticles while offering subnanometer frame-to-frame precision in all directions. Its linearity alleviates calibration procedures, while the interferometric pattern enhances precision. We illustrate its utility in single-molecule force spectroscopy and single-algae motility analysis. As with any technique based on back focal plane engineering, it may be directly embedded in a commercial objective, providing a means to convert any preexisting optical setup in a 3D tracking system. Thanks to its precision, its simplicity, and its versatility, we envision that the technique has the potential to enhance the spreading of high-precision and high-throughput 3D tracking.


MethodsX ◽  
2021 ◽  
pp. 101392
Author(s):  
Haydee E. Laza ◽  
Bo Zhao ◽  
Mary Hastert ◽  
Paxton Payton ◽  
Junping Chen

Sign in / Sign up

Export Citation Format

Share Document