Grid-Connected Nuclear Power Plant Key Issues Summary

2014 ◽  
Vol 521 ◽  
pp. 530-535
Author(s):  
Meng Wang ◽  
Jian Ding ◽  
Tian Tang ◽  
Zhang Sui Lin ◽  
Zhen Da Hu ◽  
...  

The current situation of nuclear power plants at home and abroad is described, and the impact of large-scale nuclear power accessing to the grid is analyzed, specifically in the aspects of nuclear power modeling, simulation, load following, reliability, fault diagnosis, etc. Nuclear power accessing to the grid will bring a series of problems, the causes of each problem, the main solutions and future development directions are summarized.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


Author(s):  
Sang-Nyung Kim ◽  
Sang-Gyu Lim

The safety injection (SI) nozzle of a 1000MWe-class Korean standard nuclear power plant (KSNP) is fitted with thermal sleeves (T/S) to alleviate thermal fatigue. Thermal sleeves in KSNP #3 & #4 in Yeonggwang (YG) & Ulchin (UC) are manufactured out of In-600 and fitted solidly without any problem, whereas KSNP #5 & #6 in the same nuclear power plants, also fitted with thermal sleeves made of In-690 for increased corrosion resistance, experienced a loosening of thermal sleeves in all reactors except KSNP YG #5-1A, resulting in significant loss of generation availability. An investigation into the cause of the loosening of the thermal sleeves only found out that the thermal sleeves were subject to severe vibration and rotation, failing to uncover the root cause and mechanism of the loosening. In an effort to identify the root cause of T/S loosening, three suspected causes were analyzed: (1) the impact force of flow on the T/S when the safety SI nozzle was in operation, (2) the differences between In-600 and In-690 in terms of physical and chemical properties (notably the thermal expansion coefficient), and (3) the positioning error after explosive expansion of the T/S as well as the asymmetric expansion of T/S. It was confirmed that none of the three suspected causes could be considered as the root cause. However, after reviewing design changes applied to the Palo Verde nuclear plant predating KSNP YG #3 & #4 to KSNP #5 & #6, it was realized that the second design modification (in terms of groove depth & material) had required an additional explosive energy by 150% in aggregate, but the amount of gunpowder and the explosive expansion method were the same as before, resulting in insufficient explosive force that led to poor thermal sleeve expansion. T/S measurement data and rubbing copies also support this conclusion. In addition, it is our judgment that the acceptance criteria applicable to T/S fitting was not strict enough, failing to single out thermal sleeves that were not expanded sufficiently. Furthermore, the T/S loosening was also attributable to lenient quality control before and after fitting the T/S that resulted in significant uncertainty. Lastly, in a flow-induced vibration test planned to account for the flow mechanism that had a direct impact upon the loosening of the thermal sleeves that were not fitted completely, it was discovered that the T/S loosening was attributable to RCS main flow. In addition, it was proven theoretically that the rotation of the T/S was induced by vibration.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Zhigang Lan

Focused on the utilization of nuclear energy in offshore oil fields, the correspondence between various hazards caused by blowout accidents (including associated, secondary, and derivative hazards) and the initiating events that may lead to accidents of offshore floating nuclear power plant (OFNPP) is established. The risk source, risk characteristics, risk evolution, and risk action mode of blowout accidents in offshore oil fields are summarized and analyzed. The impacts of blowout accident in offshore oil field on OFNPP are comprehensively analyzed, including injection combustion and spilled oil combustion induced by well blowout, drifting and explosion of deflagration vapor clouds formed by well blowouts, seawater pollution caused by blowout oil spills, the toxic gas cloud caused by well blowout, and the impact of mobile fire source formed by a burning oil spill on OFNPP at sea. The preliminary analysis methods and corresponding procedures are established for the impact of blowout accidents on offshore floating nuclear power plants in offshore oil fields, and a calculation example is given in order to further illustrate the methods.


2020 ◽  
Vol 194 ◽  
pp. 01021
Author(s):  
MENG Wei ◽  
LIU Xiaolin ◽  
TANG Yong ◽  
WANG Shuai ◽  
ZHANG Jinfei

The CGN Taishan NPP seawater storage is a land-sealed type and is connected to the open water intake channel of Dajin Island in the open sea through a subsea tunnel. Due to the impact of large-scale facility aquaculture in the nearby seas, fish spawning grounds have been formed in this area, and fish breeds faster. A large number of fish have impacted on safe operation of nuclear power. In response to this situation, this study conducted acoustic navigation surveys of fish resources in most waters of the “Sea Reservoir” and “Water intake channel”, using broadband scientific fish finder system (EK80, 120kHz, 200kHz) produced by Norwegian Simrad Company. Evaluation of acoustic resources using echo integration method. The survey scope of seawater storage in this survey is from the entrance to the first barrier (around a distance of 760m) and from the first barrier to a second barrier (around a distance of 220m); the survey distance of the water intake channel is about 1460m. From the echo image, it can be found that the zooplankton in the sea reservoir is much smaller than the water intake channel, and the fish size of the water intake channel is much larger than that of the sea channel.Acoustic data was processed and analyzed using Echoview software to calculate the average SV and detect the strength of the single target. The results show that in the survey area of the Taishan Nuclear Power Plant Hai Reservoir, the total number of fish is about 1.38 million, the total weight is about 13.6 tons, and the fish with a body length of less than 20cm is the majority, and there are fewer large-sized fish; The total resources in the survey area is about 47 tons, with a total number of 27 million, and has a high density.


2014 ◽  
Vol 986-987 ◽  
pp. 315-321
Author(s):  
Wen Bin Xiong ◽  
Hou Ming Zhang ◽  
Bo Ping Zhang ◽  
Hu Wei Li ◽  
Gang Wang ◽  
...  

In recent years, advanced small nuclear power reactors, namely small modular reactors (SMRs), gained widespread attention. In areas where energy can’t be provided by large scale reactors and the nuclear power plants with large scale reactors can’t compete with the non-nuclear power plant technology, SMRs, as a versatile distributed integrated energy source, which result in expanding peaceful applications of nuclear energy, have enormous potential. This article describes the characteristics and analyzes prospects and challenges of SMRs.


Author(s):  
Liang Zhang ◽  
Gang Xu ◽  
Yue Wang ◽  
Li Chen ◽  
Shao Chong Zhou

Abstract Safety-related items in nuclear power plants are now generally placed separately from the non-safety-related items, but it was not strictly required before. Therefore, it is very important to study whether the non-safety-related items will affect the safety-related items when they are dropped down in an earthquake situation, which determines the safety of a nuclear power plant and its future life extension applications. This research was based on the cooling water system room with the safety and non-safety related items installed together, as an example to study whether the non-safety-related items such as vent pipes and DN50 fire fighting pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. For the experiments, the relative positions of objects in the room was reproduced by 1: 1. The pressure-holding performance of the pipe was used as a criterion for the damage. The research results of the experiments show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long vent dropped from position of 3.6 meters height, they do not affect the integrity of the DN300 valve and pipe below. After the experiment, pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail neither. The numerical simulation study also shows that there is no failure phenomenon in the simulation as well. Compared with the test results, the impact acceleration and the vent deformation both have the same trend.


Author(s):  
Takashi Kamei

Even after the huge impact of Fukushima Daiichi nuclear power plant accident, Japan has to establish its energy supply system satisfying requirements of both global warming and resistibility of natural disaster. Nuclear power has a potential to reduce carbon emission but large-scale and centralized nuclear power plant may lose large volume of electricity supply at once. Small-scale nuclear power plants will bring solution in Japan. Thorium molten-salt reactor (MSR) is selected to simulate implementation capacity of small reactors in Japan. In order to use thorium as nuclear fuel, fissionable isotope is indispensable since natural thorium does not include fissile material. Japan owns plutonium in spent nuclear fuel of uranium usage. Quantitative evaluation of implementing capacity of thorium MSR in Japan by using plutonium accumulated in Japan. Implementation capacity of thorium MSR will be about 38 GWe and 11.2 GWe in the maximum and minimum cases at 2050, respectively.


2021 ◽  
Vol 257 ◽  
pp. 01076
Author(s):  
Xiaohui Luo ◽  
Jie Yang ◽  
Li Song ◽  
Dezhong Xu

The casting quality of the coolant pump casing of the nuclear power plant reactor is directly related to the operational reliability and safety of the nuclear main pump, and plays a key role in the integrity of the pressure-bearing boundary of the reactor primary loop. In this paper, aiming at the low impact performance of the sample during the casting process of the main pump casing of a nuclear power plant, through using failure analysis tools like fishbone diagram from multiple dimensions such as material selection, design and technology, melting analysis, pouring process, riser design, and heat treatment process, and combining with metal macro-fracture analysis and micro-electron microscopy scanning methods for cause analysis, finally, it was found that the basic reason for the low impact performance of the pump shell is that the secondary inclusions appear on the fracture of the sample during the solidification of the molten steel. Using test-retest inspection and finite element mechanics simulation analysis, the comprehensive evaluation of the impact performance of the sample was obtain, which provides an effective solution for the analysis and evaluation of casting inclusions in water pumps of nuclear power plants, and also provides an important reference for the structural optimization and equipment research and development of water pump equipment of nuclear power plants.


2020 ◽  
Author(s):  
Laurynas Butkus ◽  
Rūta Barisevičiūtė ◽  
Žilvinas Ežerinskis ◽  
Justina Šapolaitė ◽  
Evaldas Maceika ◽  
...  

<p>Nuclear Power Plants (NPPs) and nuclear fuel reprocessing sites are main producers of anthropogenic radiocarbon. Anthropogenic <sup>14</sup>C can be released into the environment in gaseous forms, with liquid effluents or with spent nuclear fuel [1]. During photosynthesis radiocarbon can be easily assimilated into the plants. As a result, carbon-14 can be transported through the food chain and accumulate in a human body. Therefore, radiocarbon is considered a primary source of increased human radiation dose from industrial nuclear activities [2].</p><p>Main goal of this research was to evaluate the influence Ignalina NPP on carbon-14 content in the Lake Druksiai. The sediment core was collected from the Lake Druksiai. The ages of sediment layers were estimated using <sup>137</sup>Cs and <sup>210</sup>Pb dating methods. ABA (acid-base-acid) chemical pretreatment procedure was used to extract humin (HM) and humic acid (HA) fractions from the sediments. Chemically pretreated samples were graphitized with the Automated Graphitization Equipment AGE 3 (IonPlus AG). Carbon-14 measurements in prepared samples were performed using the single stage accelerator mass spectrometer (SSAMS, NEC, USA).</p><p>Radiocarbon content was measured in the sediment core which covers all phases of the NPP exploitation (commissioning, operation and decommissioning). These measurements in HM and HA fractions showed that after the start of the operation of the Ignalina NPP in 1983, the <sup>14</sup>C concentration in these organic fractions increased by 4 pMC and 3 pMC, respectively. In addition, a sharp increase of radiocarbon content (concentration almost doubled) in HA fraction was observed in the year 1999. Similar increase in <sup>14</sup>C activity in fish samples from Lake Druksiai was measured. In HM fraction such drastic changes in radiocarbon concentration were not observed. These results suggest that <sup>14</sup>C enriched effluents were released from the Ignalina NPP in 1999.</p><p>[1] Z. Ezerinskis et al., Annual Variations of 14C Concentration in the Tree Rings in the Vicinity of Ignalina Nuclear Power Plant, Radiocarbon 60, 1227–1236 (2018).</p><p>[2] IAEA, Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment (2001).</p>


Author(s):  
Jurij Avsec ◽  
Peter Virtic´ ◽  
Tomazˇ Zˇagar ◽  
Luka Sˇtrubelj

Efficient and sustainable methods of clean fuel and energy production are needed in all countries of the world in the face of depleting oil reserves and the need to reduce carbon dioxide emissions. Some countries are developing technologies that could be named zero carbon technologies. The presented article will show how hydrogen technologies could be implemented with renewable technologies and nuclear technology. Nuclear technology produce very cheap electricity and could produce also cheap energy like heat and vapour. This technology should be used in nuclear power plants to develop other products like hydrogen, biofuels or district heating. One of the biggest opportunities for nuclear energy technology is to produce hydrogen. Some countries like Canada and US are in preparation to build hydrogen villages. However, a key missing element is a large-scale method of hydrogen production [1–5]. As a carbon-based technology, the predominant existing process (steam-methane reforming (SMR)) is unsuitable. This paper focuses on a production of hydrogen in connection with a nuclear power plant. We will show the technologies which allow the coupling between a nuclear power plant and hydrogen technologies.


Sign in / Sign up

Export Citation Format

Share Document