Thorium MSR as a Small-Scale Energy Source: Opportunities for Japan

Author(s):  
Takashi Kamei

Even after the huge impact of Fukushima Daiichi nuclear power plant accident, Japan has to establish its energy supply system satisfying requirements of both global warming and resistibility of natural disaster. Nuclear power has a potential to reduce carbon emission but large-scale and centralized nuclear power plant may lose large volume of electricity supply at once. Small-scale nuclear power plants will bring solution in Japan. Thorium molten-salt reactor (MSR) is selected to simulate implementation capacity of small reactors in Japan. In order to use thorium as nuclear fuel, fissionable isotope is indispensable since natural thorium does not include fissile material. Japan owns plutonium in spent nuclear fuel of uranium usage. Quantitative evaluation of implementing capacity of thorium MSR in Japan by using plutonium accumulated in Japan. Implementation capacity of thorium MSR will be about 38 GWe and 11.2 GWe in the maximum and minimum cases at 2050, respectively.

2020 ◽  
Author(s):  
Laurynas Butkus ◽  
Rūta Barisevičiūtė ◽  
Žilvinas Ežerinskis ◽  
Justina Šapolaitė ◽  
Evaldas Maceika ◽  
...  

<p>Nuclear Power Plants (NPPs) and nuclear fuel reprocessing sites are main producers of anthropogenic radiocarbon. Anthropogenic <sup>14</sup>C can be released into the environment in gaseous forms, with liquid effluents or with spent nuclear fuel [1]. During photosynthesis radiocarbon can be easily assimilated into the plants. As a result, carbon-14 can be transported through the food chain and accumulate in a human body. Therefore, radiocarbon is considered a primary source of increased human radiation dose from industrial nuclear activities [2].</p><p>Main goal of this research was to evaluate the influence Ignalina NPP on carbon-14 content in the Lake Druksiai. The sediment core was collected from the Lake Druksiai. The ages of sediment layers were estimated using <sup>137</sup>Cs and <sup>210</sup>Pb dating methods. ABA (acid-base-acid) chemical pretreatment procedure was used to extract humin (HM) and humic acid (HA) fractions from the sediments. Chemically pretreated samples were graphitized with the Automated Graphitization Equipment AGE 3 (IonPlus AG). Carbon-14 measurements in prepared samples were performed using the single stage accelerator mass spectrometer (SSAMS, NEC, USA).</p><p>Radiocarbon content was measured in the sediment core which covers all phases of the NPP exploitation (commissioning, operation and decommissioning). These measurements in HM and HA fractions showed that after the start of the operation of the Ignalina NPP in 1983, the <sup>14</sup>C concentration in these organic fractions increased by 4 pMC and 3 pMC, respectively. In addition, a sharp increase of radiocarbon content (concentration almost doubled) in HA fraction was observed in the year 1999. Similar increase in <sup>14</sup>C activity in fish samples from Lake Druksiai was measured. In HM fraction such drastic changes in radiocarbon concentration were not observed. These results suggest that <sup>14</sup>C enriched effluents were released from the Ignalina NPP in 1999.</p><p>[1] Z. Ezerinskis et al., Annual Variations of 14C Concentration in the Tree Rings in the Vicinity of Ignalina Nuclear Power Plant, Radiocarbon 60, 1227–1236 (2018).</p><p>[2] IAEA, Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment (2001).</p>


2018 ◽  
Vol 4 (4) ◽  
pp. 251-256 ◽  
Author(s):  
Sergey Shcheklein ◽  
Ismail Hossain ◽  
Mohammad Akbar ◽  
Vladimir Velkin

Bangladesh lies in a tectonically active zone. Earlier geological studies show that Bangladesh and its adjoining areas are exposed to a threat of severe earthquakes. Earthquakes may have disastrous consequences for a densely populated country. This dictates the need for a detailed analysis of the situation prior to the construction of nuclear power plant as required by the IAEA standards. This study reveals the correlation between seismic acceleration and potential damage. Procedures are presented for investigating the seismic hazard within the future NPP construction area. It has been shown that the obtained values of the earthquake’s peak ground acceleration are at the level below the design basis earthquake (DBE) level and will not lead to nuclear power plant malfunctions. For the most severe among the recorded and closely located earthquake centers (Madhupur) the intensity of seismic impacts on the nuclear power plant site does not exceed eight points on the MSK-64 scale. The existing predictions as to the possibility of a super-earthquake with magnitude in excess of nine points on the Richter scale to take place on the territory of the country indicate the necessity to develop an additional efficient seismic diagnostics system and to switch nuclear power plants in good time to passive heat removal mode as stipulated by the WWER 3+ design. A conclusion is made that accounting for the predicted seismic impacts in excess of the historically recorded levels should be achieved by the establishment of an additional efficient seismic diagnostics system and by timely switching the nuclear power plants to passive heat removal mode with reliable isolation of the reactor core and spent nuclear fuel pools.


Author(s):  
Taihei Yotsuya ◽  
Kouichi Murayama ◽  
Jun Miura ◽  
Akira Nakajima ◽  
Junichi Kawahata

A composite module construction method is to be examined reflecting one of the elements of construction rationalization of a future nuclear plant planned by Hitachi. This concept is based on accomplishments and many successes achieved by Hitachi through application of the modular construction method to nuclear power plant construction over 20 years. The feature of the composite module typically includes a planned civil structure, such as a wall, a floor, and a post, representing modular components. In this way, an increased level of rationalization is expected in the conventional large-scale nuclear plants. Furthermore, the concept aiming at the modularization of all the building parts comprising medium- or small-scale reactors is also to be examined. Additional aims include improved reductions in the construction duration and rationalization through use of the composite module. On the other hand, present circumstances in nuclear plant construction are very pressing because of economic pressures. With this in mind, Hitachi is pursuing additional research into the introduction of drastic construction rationalization, such as the composite module. This concept is one of the keys to successful future plant construction, faced with such a severe situation.


2014 ◽  
Vol 521 ◽  
pp. 530-535
Author(s):  
Meng Wang ◽  
Jian Ding ◽  
Tian Tang ◽  
Zhang Sui Lin ◽  
Zhen Da Hu ◽  
...  

The current situation of nuclear power plants at home and abroad is described, and the impact of large-scale nuclear power accessing to the grid is analyzed, specifically in the aspects of nuclear power modeling, simulation, load following, reliability, fault diagnosis, etc. Nuclear power accessing to the grid will bring a series of problems, the causes of each problem, the main solutions and future development directions are summarized.


2015 ◽  
Vol 17 (2) ◽  
pp. 87
Author(s):  
Mochamad Nasrullah ◽  
Wiku Lulus Widodo

ABSTRAK PERHITUNGAN BIAYA OPERASI DAN PERAWATAN PLTN SKALA BESAR DAN KECIL. Biaya pembangkit PLTN terdiri dari tiga komponen, yaitu biaya investasi, bahan bakar dan operasi perawatan (O & M). Besarnya biaya O&M pada PLTN besar dan kecil tidaklah sama. Studi ini bertujuan untuk menghitung biaya O&M PLTN skala besar dan kecil dengan mempertimbangkan parameter teknis dan ekonomis yang diambil dari berbagai data sekunder dan sumber lainnya. Studi dilakukan menggunakan data dari PLTN jenis PWR dengan daya 1343 MWe untuk PLTN ukuran besar dan daya 90 MWe untuk PLTN ukuran kecil. Asumsi digunakan tingkat eskalasi sebesar 5%, faktor kapasitas 90%. Metodologi yang digunakan adalah menghitung dengan spreadsheet yang meliputi skala masing-masing komponen O&M. Hasil perhitungan menunjukkan biaya O & M jika dihitung dengan satuan juta US$/tahun, maka biaya O&M PLTN 1343 MWe sebesar 99,21 juta US$/tahun lebih mahal dari PLTN 90 MWe sebesar 45,13 juta US $/tahun. Namun jika biaya O & M PLTN 1343 MWe dihitung dengan satuan mills $/kWh, maka hasilnya  sebesar 9,37 lebih murah dibandingkan dengan PLTN 90 MWe yaitu sebesar 63,70 mills $/kWh. Hal ini berarti semakin kecil ukuran kapasitas dayanya maka biaya operasi dan perawatannya semakin mahal. Penyebab perbedaan biaya operasi dan perawatan antara PLTN skala besar dan kecil, adalah kapasitas daya, faktor kapasitas, jumlah personal yang bekerja pada biaya administrasi umum pegawai dan manajemen, operasi pembangkit tahunan, biaya tenaga kerja offsite. Kata kunci : Biaya operasi dan perawatan, PLTN, LEGECOST ABSTRACT CALCULATION OF OPERATION AND MAINTENANCE COST FOR LARGE AND SMALL SCALE NPP. The generation cost of nuclear power plant consists of three components:  investment costs, fuel cost operation and maintenance (O&M) cost. O&M costs in the large scale of NPP is different from small scale NPP. The objective of this study are to calculate the O&M cost of large NPP and small NPP by considering technical and economic parameters from secondary data and  other references. This study uses 1343 MWe PWR data for large NPP and 90 MWe PWR for small NPP. The assumptions are 5% escalation level and 90% capacity factor. The methodology for calculation using spreadsheet with scaling methods for each O&M components. The results shows that the O &M cost if calculated in units of million US$/year, the O&M cost of NPP 1343 MWe is US$million 99.21/ year which is more expensive than the O&M cost of NPP 90 Mwe which is only US$million 45.13/ year.  But if the cost of O&M 1343 MWe nuclear power plant unit is calculated in units of mills $/kWh, the result shows that the O&M cost is 9.37 mills $/kWh which is less than the 90 MWe NPP which reaches $ 63.70 mills/kWh. The conclusion is  lower NPP capacity  has higher O&M cost. Different O&M cost is caused by power capacity, capacity factor, the amount of worker on site staff, the annual net generation and the offsite technical support. Keywords: Operation and maintenance cost, NPP, LEGECOST 


Author(s):  
S. Z. Zhiznin ◽  
V. M. Timokhov

Nuclear power in its present form was created during the Cold War and is its heritage. The main objective of nuclear energy at that time, along with energy, was the creation and accumulation of nuclear materials. To this aim a existing nuclear power plants based on uranium-plutonium cycle. Everything else - the processing of radioactive waste and spent nuclear fuel, storage, recycling themselves nuclear power plant after its end of life, the risks of proliferation of nuclear materials and other environmental issues - minor. It was also believed that the nuclear power plant - the most reliable and safe plant. During the last twenty years all over the world the number of new orders for nuclear aggregates has decreased. That happens for a number of reasons, including public resistance, that the construction of new NPP and the excess of energy utilities in many markets, which is mainly connected with high market competition in energy markets and low economic indicators of the current nuclear utilities. The technology that consists of low capital costs, a possibility for quick construction and guarantied exploitation quality is on the winners side, but currently this technology is absent. However, despite abovementioned downsides, as the experience of state corporation "Rosatom"has shown, many developing countries of the South-east Asia, The middle East, African regions express high interest in the development of nuclear energy in their countries. The decision whether to develop nuclear energy or to continue to develop is, in the end, up to the choice of the tasks that a country faces. The article describes these "minor" issues, as well as geopolitical and economic problems of the further development of nuclear energy.


2014 ◽  
Vol 986-987 ◽  
pp. 315-321
Author(s):  
Wen Bin Xiong ◽  
Hou Ming Zhang ◽  
Bo Ping Zhang ◽  
Hu Wei Li ◽  
Gang Wang ◽  
...  

In recent years, advanced small nuclear power reactors, namely small modular reactors (SMRs), gained widespread attention. In areas where energy can’t be provided by large scale reactors and the nuclear power plants with large scale reactors can’t compete with the non-nuclear power plant technology, SMRs, as a versatile distributed integrated energy source, which result in expanding peaceful applications of nuclear energy, have enormous potential. This article describes the characteristics and analyzes prospects and challenges of SMRs.


Author(s):  
Yung-Shin Tseng ◽  
Jong-Rong Wang ◽  
Chi-Hung Lin ◽  
Chunkuan Shin ◽  
F. Peter Tsai

Chinshan Nuclear Power Plant (CSNPP) is a two-unit BWR4 plant with 1804MWt power per unit. Taipower Co., the owner of the plant is preparing the life extension procedure to extend the CSNPP operation time. In order to meet the life extension requirement, many issues need to be solved before life extension licensing, such as the spent nuclear fuel management, structure aging etc. For the spent nuclear fuel management, ROC Atomic Energy Council (ROCAEC) certified method is employed to analyze the thermal behaviors of Dry Storage System (DSS). This method uses ANSYS coupled with RELAP5-3D to solve the thermal characteristic and successfully accomplish the licensing procedure of the Chinshan Nuclear Dry Storage Project. However, further validation results demonstrate that the coupled method still exists uncertainty and deficiency. In this study, a new Computational Fluid Dynamics (CFD) numerical model for spend nuclear fuel (NSF) dry storage system (DSS) has been developed to improve the accuracy of DSS thermal analysis results. Its accuracy has been validated by comparing the temperature predictions with the experimental results of VSC-17 DSS. It has been found that the thermal behaviors and physical phenomena in the DSS could be predicted with good agreement for the measurements. Moreover, the uncertainty and reasonableness of results in previous method can be improved by the new thermal analyses methodology.


Sign in / Sign up

Export Citation Format

Share Document