scholarly journals Computational Analysis of Compressive Strain Hardening Exponents of Bimetal with Pearlitic Steel and Low Carbon Steel

2014 ◽  
Vol 553 ◽  
pp. 71-75 ◽  
Author(s):  
Xing Jian Gao ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei ◽  
Si Hai Jiao ◽  
Jing Tao Han

The compressive strain hardening behaviour of a novel bimetal with pearlitic steel and low carbon steel was investigated by computational analysis based on the isothermal compression tests in a wide range of deformation temperature and strain rate. The Hollomon’s equation was employed to calculate the strain hardening exponent (SHE) with the assistance of mathematical manipulation. The result shows that the logarithmic relationship between the flow stress and plastic strain of the bimetal is highly non-linear, which results in the variation of the SHE of the bimetal. This variation reflects the dynamic competition between the strain hardening and softening mechanism by the varying value of the SHE in the range of 0.4 to-0.4. Furthermore, the influences of deformation temperature and strain rate on the SHE are significant. With decreasing temperature and increasing strain rate, the strain hardening of the bimetal was enhanced, while the dynamic recrystallisation was activated under the opposite conditions with the evidence of negative SHE value.

2006 ◽  
Vol 512 ◽  
pp. 49-54
Author(s):  
S.V.S. Narayana Murty ◽  
Shiro Torizuka ◽  
Kotobu Nagai

We examined the microstructure development in low carbon steel (0.15% C) during heavy warm deformation (HWD) using field emission scanning electron microscopy (FESEM) and electron back-scattering diffraction (EBSD). Plane strain compression tests have been conducted in the temperature range of 773-923 K at strain rates of 0.01 s-1 and 1 s-1 with the specimens deformed to 25% of their original thickness. We summarize the strain rate and temperature into the Zener-Hollomon parameter and investigate its variation with plastic strain on the basis of the evolved microstructures and grain boundary character with a view to understanding the critical conditions for forming ultrafine grains and classifying them. Once established, these compressive strain-Z parameter plots simplify the selection of processing parameters (such as strain, strain rate, and temperature), towards achieving tailor-made microstructures in industrial components.


2007 ◽  
Vol 558-559 ◽  
pp. 523-528
Author(s):  
Joo Hee Kang ◽  
Shiro Torizuka ◽  
Toshihiro Hanamura

The microstructural change was observed during large strain high Z deformation with high strain rate in high temperature range using ultra low carbon steel. The finer grains were obtained as decreasing the deformation temperature and increasing the strain rate. And the fraction of high angle grain boundaries became higher in low deformation temperature and strong texture of ferrite recrystallized dynamically was measured such as ND//<100>,<111> and RD//<110>. The change of grain size could be analyzed by Zener-Hollomon parameter, whereas the duration has large effect on the deviation of expected grain size in deformation with high strain rate.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


2006 ◽  
Vol 510-511 ◽  
pp. 518-521 ◽  
Author(s):  
Jae-Young An ◽  
Young Jae Kwon ◽  
S.I. Kim ◽  
Duk Lak Lee ◽  
Yeon Chul Yoo

The relationships between flow stress curve and microstructure evolution in strain induced dynamic phase transformation (SIDT) of low carbon steel (0.22wt.%) were quantitatively investigated. The deformation was carried out at just above Ar3 temperature (710°C) as a function of strain rate (0.01-5/sec). The softening process of SIDT was well agreed with calculated result derived from Avrami’s and constitutive equation at higher strain rate than 0.5/sec. However, the calculated results differed from the experimental curve at strain rate of less than 0.2/sec. This is due to fact that the dynamic transformation from austenite to ferrite can not be completed owing to less stored energy during hot deformation.


Sign in / Sign up

Export Citation Format

Share Document