Radiation Degradation Modeling of Bipolar Operational Amplifier Input Offset Voltage in LTSpice IV

2014 ◽  
Vol 565 ◽  
pp. 138-141 ◽  
Author(s):  
A.S. Bakerenkov ◽  
V.S. Pershenkov ◽  
A.V. Solomatin ◽  
V.V. Belyakov ◽  
V.V. Shurenkov

Integrated circuits are used in electronic equipment of spaceships. Therefore, they are impacted by ionizing radiation during space mission. It leads to electronic equipment failures. At present operational amplifiers are base elements of analog electronic devices. Radiation impact leads to degradation of operational amplifiers input stages. Input bias current increasing and input offset voltage drifts are the results of ionizing radiation expose of operational amplifiers. Therefore, space application electronic equipment fails after accumulation of limit dose. It isn’t difficult to estimate radiation degradation of input bias currents of bipolar operational amplifiers, but estimation of dose dependence of input offset voltage drift is more complex issue. Schematic modeling technique based on Gummel–Poon transistor model for estimation of input offset voltage drift produced by space radiation impact was experimentally verified for LM324 operational amplifier and presented in this work. Radiation sensitive parameters of Gummel–Poon model were determined using 2N2907 bipolar pnp transistor.

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 52-60
Author(s):  
O. V. Dvornikov ◽  
V. A. Tchekhovski ◽  
V. L. Dziatlau ◽  
Y. D. Galkin ◽  
Nikolay N. Prokopenko

Structured arrays and master slice arrays are often used to reduce cost, design and test time for radiation hardened analog integrated circuits. One of such master slice arrays is МН2ХА030, which uses bipolar and junction field-effect transistors. The purpose of this article is to estimate the effect of ionizing radiation on the parameters of the operational amplifier OAmp2 and comparators ADComp1 and ADComp3 created on the МН2ХА030 master slice array. Еhe results of measurements of analog components after exposure to 60Co gamma quanta with an absorbed dose of up to 700 krad and a fast electron fluence of up to 2.9·1015 el./cm2 with an energy of 6 MeV are presented. The OAmp2 operational amplifier provides a satisfactory level of basic static parameters (input current, offset voltage, voltage gain) at a fast electron fluence of up to 3.7·1014 el./cm2 with an energy of 6 MeV. There are a decrease in the voltage gain and an increase in the offset voltage at electron fluence of greater than 1015 el./cm2. The latter can be caused by a decrease in the efficiency of the common-mode signal feedback integrated into operational amplifier with a significant drop in current gain of bipolar transistors. All considered analog components provide a satisfactory level of basic static parameters at a fast electron fluence of up to 3.7·1014 el./cm2 with an energy of 6 MeV and an absorbed dose of 60Co gamma quanta of at least 700 krad. It is assumed that resistance of OAmp2, ADComp1, ADComp3 to the action of 60Co gamma quanta is significantly higher and requires further research. The developed analog components can be used in signal reading devices required in front-end of sensors for space instrumentation and nuclear electronics.


2019 ◽  
pp. 57-63
Author(s):  
M. A. Artyukhova ◽  
S. N. Polesskiy

Human activity is often accompanied by exposure of ionizing radiation: the exploitation of space systems and power plants, research using isotopic sources, medicine. The development of electronic equipment is regulated by carrying out activities to ensure the required reliability and radiation resistance. However, the effect of ionizing radiation on reliability indicators is not taken into account properly, or is not taken into account at all, that sometimes leads to the loss of expensive equipment and even to human victims. The article discusses the methodology for carrying out an adequate estimate of the reliability considering the influence of external influencing factors, including ionizing radiation. The timeliness of decisions making to ensure the required reliability indicators is determined by the completeness of the reliability estimation at the design stage. Effort to ensure the reliability and durability of devices after the design stage is not economically viable. The completeness and adequacy of the estimation always depends on the interaction of specialists in different fields: designers, programmers, experts in the field of circuit design, electrical engineering and experts in the field of reliability and radiation resistance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2808
Author(s):  
Leandro H. de S. Silva ◽  
Agostinho A. F. Júnior ◽  
George O. A. Azevedo ◽  
Sergio C. Oliveira ◽  
Bruno J. T. Fernandes

The technological growth of the last decades has brought many improvements in daily life, but also concerns on how to deal with electronic waste. Electrical and electronic equipment waste is the fastest-growing rate in the industrialized world. One of the elements of electronic equipment is the printed circuit board (PCB) and almost every electronic equipment has a PCB inside it. While waste PCB (WPCB) recycling may result in the recovery of potentially precious materials and the reuse of some components, it is a challenging task because its composition diversity requires a cautious pre-processing stage to achieve optimal recycling outcomes. Our research focused on proposing a method to evaluate the economic feasibility of recycling integrated circuits (ICs) from WPCB. The proposed method can help decide whether to dismantle a separate WPCB before the physical or mechanical recycling process and consists of estimating the IC area from a WPCB, calculating the IC’s weight using surface density, and estimating how much metal can be recovered by recycling those ICs. To estimate the IC area in a WPCB, we used a state-of-the-art object detection deep learning model (YOLO) and the PCB DSLR image dataset to detect the WPCB’s ICs. Regarding IC detection, the best result was obtained with the partitioned analysis of each image through a sliding window, thus creating new images of smaller dimensions, reaching 86.77% mAP. As a final result, we estimate that the Deep PCB Dataset has a total of 1079.18 g of ICs, from which it would be possible to recover at least 909.94 g of metals and silicon elements from all WPCBs’ ICs. Since there is a high variability in the compositions of WPCBs, it is possible to calculate the gross income for each WPCB and use it as a decision criterion for the type of pre-processing.


1981 ◽  
Vol 6 (4) ◽  
pp. 386 ◽  
Author(s):  
Robert F. Coughlin ◽  
Frederick F. Driscoll

1985 ◽  
Vol 21 (9) ◽  
pp. 389 ◽  
Author(s):  
S.L. Wong ◽  
C.A.T. Salama

Sign in / Sign up

Export Citation Format

Share Document