Sliding Mode Controller for Two Conical Tank Interacting Level System

2014 ◽  
Vol 573 ◽  
pp. 273-278 ◽  
Author(s):  
V.R. Ravi ◽  
M. Monica ◽  
S. Amuthameena ◽  
S.K. Divya ◽  
S. Jayashree ◽  
...  

In this paper, the robust control problem of interacting nonlinear multi-input multi-output (MIMO) systems is proposed. The robustness against unknown process parameter variation is considered. Three algorithms based on the Sliding Mode Control (SMC) are proposed: SMC with conventional surface, SMC with PID surface and SMC with integral surface. The effectiveness of these algorithms are simulated and implemented on Two Conical Tank Interacting Level System (TCTILS) which exhibits dynamic non linearity and coupling dynamics. The SMC with conventional sliding surface provides robust control against parameter variation and excellent set point tracking compared to SMC with PID sliding surface and SMC with integral sliding surface.

Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Peng Gao ◽  
Guangming Zhang ◽  
Huimin Ouyang ◽  
Lei Mei

A novel sliding mode controller (SMC) with nonlinear fractional order PID sliding surface based on a novel extended state observer for the speed operation of a surface-mounted permanent magnet synchronous motor (SPMSM) is proposed in this paper. First, a new smooth and derivable nonlinear function with improved continuity and derivative is designed to replace the traditional nonderivable nonlinear function of the nonlinear state error feedback control law. Then, a nonlinear fractional order PID sliding mode controller is proposed on the basis of the fractional order PID sliding surface with the combination of the novel nonlinear state error feedback control law to improve dynamic performance, static performance, and robustness of the system. Furthermore, a novel extended state observer is designed based on the new nonlinear function to achieve dynamic feedback compensation for external disturbances. Stability of the system is proved based on the Lyapunov stability theorem. The corresponding comparative simulation results demonstrate that the proposed composite control algorithm displays good stability, dynamic properties, and strong robustness against external disturbances.


2016 ◽  
Vol 829 ◽  
pp. 128-132 ◽  
Author(s):  
Van Van Huynh ◽  
Minh Hoang Quang Tran

In this paper, a new integral sliding mode control scheme is designed for the 3-pole active magnetic bearing system. First, a new integral sliding surface is designed such that the 3-pole active magnetic bearing system in the sliding mode is asymptotically stable under certain conditions. Then, an adaptive controller is designed to solve the unknown upper bound of matched uncertainty and guarantee the reachability of the integral sliding surface. Finally, the performance of the proposed integral sliding mode controller is applied to 3-pole active magnetic bearing system to demonstrate the efficacy of the proposed method.


Author(s):  
C. B. Kadu ◽  
A. A. Khandekar ◽  
C. Y. Patil

This paper deals with the design of sliding mode controller (SMC) with proportional plus integral sliding surface for regulation and tracking of uncertain process control systems. However, design method requires linear state model of the system. Tuning parameter of SMC has been determined using linear quadratic regulator (LQR) approach. This results in optimum sliding surface for selected performance index. Matched uncertainty is considered to obtain the stability condition in terms of its upper bound. A conventional state observer has been used to estimate the states. The estimated states are then fed to controller for determining control signal. The simulation study and experimentation on real-life level system have been carried out to validate performance and applicability of the proposed controller.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1309-1317
Author(s):  
Bei Liu ◽  
Yang Yi ◽  
Hong Shen ◽  
Chengbo Niu

This brief proposes a novel composite observer-based integral sliding mode tracking control algorithm for a class of nonlinear systems affected by both actuator faults and mismatched disturbances. First, different types of observers, including the extended state observer, the fault diagnosis observer, and the disturbance observer, are integrated to estimate the unknown system state, actuator faults, and mismatched disturbances timely. Then, in accordance with the estimation information, the integral sliding surface and the integral sliding mode controller are proposed, which can tolerate the actuator faults and reject the mismatched disturbances. Meanwhile, the state trajectories can be driven into the specified sliding surface in a finite time. Furthermore, not only the stability, but the favorable dynamical tracking and the output constraints of closed-loop augmented systems can be guaranteed. Finally, the validities of the proposed algorithm are embodied by the simulation results of typical A4D systems.


2017 ◽  
Vol 105 ◽  
pp. 235-239 ◽  
Author(s):  
Chong Chee Soon ◽  
Rozaimi Ghazali ◽  
Hazriq Izzuan Jaafar ◽  
Sharifah Yuslinda Syed Hussien

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Lijun Gao ◽  
Yuqiang Wu

This paper addresses the problem ofH∞control for a class of uncertain stochastic systems with Markovian switching and time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties and an unknown nonlinear function in the state. An integral sliding surface corresponding to every mode is first constructed, and the given sliding mode controller concerning the transition rates of modes can deal with the effect of Markovian switching. The synthesized sliding mode control law ensures the reachability of the sliding surface for corresponding subsystems and the global stochastic stability of the sliding mode dynamics. A simulation example is presented to illustrate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document