scholarly journals Faktor Keamanan Stabilitas Lereng pada Kondisi Eksisting dan Setelah Diperkuat Dinding Penahan Tanah Tipe Counterfort dengan Program Plaxis

Author(s):  
Rizki Ramadhan ◽  
Munirwansyah Munirwansyah ◽  
Munira Sungkar

The Aceh Tengah / Gayo Lues-Blangkejeren road segment (N.022) Km 438 + 775 is one of the Central Cross National Roads in the Province of Aceh, which often experiences landslides due to being in hilly areas. Landslides that occur in these locations are caused by scouring of road runoff, lack of optimal drainage and the absence of outlets for drainage and soil layers under asphalt pavement consisting of loose material. Therefore, a slope reinforcement study with Counterfort type retaining wall is needed. This study aims to analyze slope stability by obtaining safety factor numbers and identifying slope failure patterns. Analysis was carried out to obtain safety factors and slope failure patterns by using 2D Plaxis and slice methods. The calculation of safety factors for Counterfort type retaining walls is done manually. The input soil parameters used are dry volume weight (gd), wet volume weight (gw), permeability (k), modulus young (Eref), paisson's ratio (υ), shear angle (f), cohesion (c) . The results of slope stability analysis on the existing conditions using the Plaxis program and the slice method with radius (r) 65.06 meters found that safety factors were 1.038 and 1.079 with unsafe slope conditions (FK <1.25). The results of the analysis after reinforced counterfort and minipile type retaining wall with a length of 12 meters found 1,268 safety factor numbers with unsafe slope conditions (FK <1,5). Thus, additional reinforcement is needed by using anchor on the counterfort. The results of slope stability analysis after reinforced counterfort, minipile and anchor type retaining walls with a length of 20 meters and a slope of 30 ° were obtained with a safety factor number of 1.513 with safe slope conditions (SF> 1.5).ABSTRAKRuas jalan batas Aceh Tengah/Gayo Lues-Blangkejeren (N.022) Km 438+775 merupakan salah satu ruas jalan Nasional Lintas Tengah Provinsi Aceh, yang sering mengalami terjadi tanah longsor karena berada di daerah perbukitan. Longsoran yang terjadi pada lokasi tersebut disebabkan oleh gerusan air limpasan permukaan jalan, kurang optimalnya drainase dan tidak adanya outlet untuk pembuangan air serta lapisan tanah di bawah perkerasan aspal terdiri dari material lepas. Oleh karena itu, diperlukan kajian perkuatan lereng dengan dinding penahan tanah tipe Counterfort. Kajian ini bertujuan untuk menganalisis stabilitas lereng dengan mendapatkan angka faktor keamanan dan mengidentifikasi pola keruntuhan lereng. Analisis dilakukan untuk mendapatkan faktor keamanan dan pola keruntuhan lereng yaitu dengan menggunakan program Plaxis 2D dan metode irisan. Perhitungan faktor keamanan untuk dinding penahan tanah tipe Counterfort dilakukan secara manual. Adapun parameter  tanah input yang digunakan adalah berat volume kering (gd), berat volume basah (gw), permeabilitas (k), modulus young (Eref), paisson’s rasio (υ), sudut geser (f), kohesi (c). Hasil analisis stabilitas lereng pada kondisi eksisting menggunakan program Plaxis dan metode irisan dengan jari-jari (r) 65,06 meter didapatkan akan faktor keamanan sebesar 1,038 dan 1,079 dengan kondisi lereng tidak aman (FK < 1,25). Hasil analisis setelah diperkuat dinding penahan tanah tipe counterfort dan minipile dengan panjang 12 meter didapatkan angka faktor keamanan 1,268 dengan kondisi lereng tidak aman (FK < 1,5). Dengan demikian, maka diperlukan perkuatan tambahan dengan menggunakan angkur pada counterfort. Hasil analisis stabilitas lereng setelah diperkuat dinding penahan tanah tipe counterfort, minipile dan angkur dengan panjang 20 meter serta sudut kemiringan 30° didapatkan angka faktor keamanan 1,513 dengan kondisi lereng aman (SF > 1,5).Kata kunci : longsoran; counterfort; plaxis 2D; faktor keamanan.

2018 ◽  
Vol 1 (2) ◽  
pp. 58-68
Author(s):  
Karsa Ciptaning ◽  
Yuhanis Yunus ◽  
Sofyan M. Saleh

The Babahrot - Blangkejeren road of a segment is one of the most frequently affected by a landslide due to its location in the range of hills in Aceh Province. The road is the only one facilities to connect between both cities, and it is the only one to access for crop trading as well other plantation. The impact of landslide causes disconnection from Gayo Lues to South West Aceh or vice versa. Therefore, it is necessary to study the slope reinforcement at the bottom of the road construction with retaining wall counterfort type.  This study aims to analyze slope stability by obtaining reasonable Safety Factor (SF). The method used is Fellenius Method and combining modeling using the Geoslope software. The Fellenius calculation employed static seismic load. Meanwhile, the Geoslope Program utilized either with or without static seismic load.  The static analysis was carried out based on Indonesian Seismic Zone map (2004) for 50 years (coefficient 0.229). The scope of the analysis was a calculation of slope stability includes calculating slope stability on STA 13 + 885. The result of slope stability analysis on the existing using gdry and gwet with the Geo Slope software both without and by using static seismic load on STA 13+885 is unsafe. Thus, handling the existing is needed. The counterfort of retaining wall is considered to use for alternative slope stability construction. The result of slope stability analysis using Counterfort has safety factor 1,5, if additional handling is done by changing slope angle 20°.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


2021 ◽  
pp. 46-54
Author(s):  
Muhammad Amin Syam ◽  
Heriyanto Heriyanto ◽  
Hamzah Umar

PT Belayan Internasional Coal is an open-pit system mining company, one of its geotechnical activities is the construction of the slopes. Slope stability analysis used the Bishop Simplified method to obtain the value of the dynamic safety factor (≥ 1,1). Currently, the value of the Safety Factor (FK) is an indicator in determining whether the slope is stable or not. The parameters used in the slope stability analysis are the physical and mechanical properties of the rock, namely weight (ɣ), cohesion value (c), and internal shear angle (∅). From the results of dynamic overall slope calculations, the recommended overall slope is constructed with an individual slope angle of 55°, a bench width of 5 meters, a height of 10 meters, and the number of individual slopes of 8 slopes. This design will produce dimensions of the overall slope with 41° slope angle, 80 meters high, and has a dynamic safety factor value of 1,102 with the water-saturated condition. Thus, the slopes are in stable condition.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1250
Author(s):  
Sina Shaffiee Haghshenas ◽  
Sami Shaffiee Haghshenas ◽  
Zong Woo Geem ◽  
Tae-Hyung Kim ◽  
Reza Mikaeil ◽  
...  

Slope stability analysis is undoubtedly one of the most complex problems in geotechnical engineering and its study plays a paramount role in mitigating the risk associated with the occurrence of a landslide. This problem is commonly tackled by using limit equilibrium methods or advanced numerical techniques to assess the slope safety factor or, sometimes, even the displacement field of the slope. In this study, as an alternative approach, an attempt to assess the stability condition of homogeneous slopes was made using a machine learning (ML) technique. Specifically, a meta-heuristic algorithm (Harmony Search (HS) algorithm) and K-means algorithm were employed to perform a clustering analysis by considering two different classes, depending on whether a slope was unstable or stable. To achieve the purpose of this study, a database made up of 19 case studies with 6 model inputs including unit weight, intercept cohesion, angle of shearing resistance, slope angle, slope height and pore pressure ratio and one output (i.e., the slope safety factor) was established. Referring to this database, 17 out of 19 slopes were categorized correctly. Moreover, the obtained results showed that, referring to the considered database, the intercept cohesion was the most significant parameter in defining the class of each slope, whereas the unit weight had the smallest influence. Finally, the obtained results showed that the Harmony Search algorithm is an efficient approach for training K-means algorithms.


2012 ◽  
Vol 446-449 ◽  
pp. 1905-1913
Author(s):  
Mo Wen Xie ◽  
Zeng Fu Wang ◽  
Xiang Yu Liu ◽  
Ning Jia

The Various methods of optimization or random search have been developed for locating the critical slip surface of a slope and the related minimum safety factor in the limit equilibrium stability analysis of slope. But all these methods are based on a two-dimensional (2D) method and no one had been adapted for a search of the three-dimensional (3D) critical slip surface. In this paper, a new Monte Carlo random simulating method has been proposed to identify the 3D critical slip surface, in which assuming the initial slip to be the lower part of an ellipsoid, the 3D critical slip surface in the 3D slope stability analysis is located by minimizing the 3D safety factor of limit equilibrium approach. Based on the column-based three-dimensional limit equilibrium slope stability analysis models, new Geographic Information Systems (GIS) grid-based 3D deterministic limit equilibrium models are developed to calculate the 3D safety factors. Several practical examples, of obtained minimum safety factor and its critical slip surface by a 2D optimization or random technique, are extended to 3D slope problems to locate the 3D critical slip surface and to compare with the 2D results. The results shows that, comparing with the 2D results, the resulting 3D critical slip surface has no apparent difference only from a cross section, but the associated 3D safety factor is definitely higher.


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 69
Author(s):  
Adelina Melati Sukma

On the construction of green open space Jl. Kinibalu Banjarbaru There is a 6 meters tall slope beneath which the river is lined up during the rainy season and makes the slope exposed by water plus the absence of load or traffic on it make the pore figures on the land is large. Therefore, for protection reason, there is a soil alignment in the construction of soil retaining walls. The planned ground retaining wall type is cantilever and gabion. The stability analysis of the ground retaining walls is done manually and with the help of the Geoslope/W 2018 software. The value of the stability of the style against the bolsters, sliding, and carrying capacity of the soil using manual calculations for cantilever type and Netlon qualifies SNI 8460:2017. And for the overall stability calculation using Geoslope/W 2018 software obtained safety factor (SF) > 1.5. From the analysis, the design of planning can be used because it is safe against the dangers of avalanche.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 236
Author(s):  
Akhmudiyanto Akhmudiyanto ◽  
Paulus Pramono Rahardjo ◽  
Rinda Karlinasari

One of the causes of on-road collapse slopes is traffic load. Slope failure by road loads usually occurs due to several factors such as soil type, rainfall, land use. This study aims to determine landslide and slope repair performance using bore pile and ground anchor on Cipali Toll Road KM 103. The research method used in this study is the Finite element method. In this research, data collection, modeling parameter determination, slope stability analysis, slope reinforcement analysis, and reinforcement design were carried out with variations in bore pile and ground anchor dimensions. The software program used is a finite element program in the form of PLAXIS to analyze slope stability and estimate the slope failure area. The result of the study is that the R-Value inter is 0.25 with a 1.0341 safety factor. Best repair performance obtained from the addition of reinforcement with ground anchor 2 layer on bore pile 2 with a distance of 2 meters increased the safety factor to 1,913; Borepile capacity calculation with the calculation of normal force and moment iteration, the largest occurs in the DPT (Retaining Wall) stage with a normal load of -37.9 and a moment force of -471.15 which is still able to be borne by bore pile 1. The result of this study is expected to be benchmark and repair material to improve slope stability at km 103 Tol Cipali


2018 ◽  
Author(s):  
Darmadi Ir

Abstract Slope stability analysis with SOFTWARE ROCSCIENCE SLIDE case studies in residential barracks of PT. Freport with various variations in loading and conditions show results The greater the load on the slope, the lower the Factor of Safety value. FS values for all methods, sections, and ramp widths are greater in dry than wet conditions. The greater the load distance from the slope, the greater the FS value. At a distance of 3m from the crest slope the decrease in FS value is very significant, in sections 1 and 2 there is still a secure FS value with a load of 50 kN / m, the smaller the overall slope angle (slope) the greater the FS value.Keywords: Slope stability, safety factor, maximum load


Sign in / Sign up

Export Citation Format

Share Document