A Key Strategy for Controlling the High-Power Photovoltaic Inverter

2014 ◽  
Vol 577 ◽  
pp. 463-468
Author(s):  
Jing Hua Zhou ◽  
An Wei Cui ◽  
Xiao Wei Zhang

In this paper, a systematic control strategy has been proposed for specific problems with the various key performance indicators of the high-power photovoltaic (PV) inverter when it connects to the grid. it proposes fast and accurate variable-step-size perturbation and observation combined with power prediction as a Maximum Power Point Tracking-based (MPPT) control strategy. To meet the requirements for low voltage ride through (LVRT), it proposes a strategy for LVRT control. It adopts an active method used for anti-islanding detection of reactive power disturbance so as to realize anti-islanding detection quickly. Finally, it carries out testing on the control strategy by means of an experimental platform with a 500 kW PV inverter to prove the effectiveness of the proposed control strategy.

2014 ◽  
Vol 556-562 ◽  
pp. 1753-1756
Author(s):  
Ming Guang Zhang ◽  
Xiao Jing Chen

The control strategy based on predictive current is proposed to solve problems that destruct stable operation of grid-connected photovoltaic system during asymmetrical fall. A mathematical model of PV inverter is established to calculate current instruction; a method of tracking based on predictive current is proposed to reduce the fluctuations of 2 times frequency. In the meantime, PV inverter provides reactive power to support voltage recovery according to the depth of grid voltage sags and realize LVRT. The result also shows that the proposed control strategy can reduce wave of DC voltage and provide reactive power to support voltage recovery.


2021 ◽  
Vol 299 ◽  
pp. 01013
Author(s):  
Yiwei Ma ◽  
Fuxing Wang ◽  
Zongsheng Huang ◽  
Qin Feng ◽  
Changhao Piao

Aiming at the problem of low voltage gain of traditional boost converter and the incompatibility of tracking speed and tracking accuracy with the traditional incremental conductance algorithm (INC), this paper uses the hybrid boost converter as the DC/DC converter of photovoltaic system, and designs the variable step size INC algorithm control strategy to achieve Maximum power point tracking (MPPT) of photovoltaic. Simulink simulation model verifies the feasibility of the proposed algorithm, which effectively improves the output voltage and power generation efficiency of the photovoltaic system.


2018 ◽  
Vol 69 ◽  
pp. 01009
Author(s):  
Tzung-Lin Lee ◽  
Shang-Hung Hu ◽  
Shih-Sian Yang

Increasing installation of photovoltaic (PV) in the distribution power system has resulted in serious voltage rise, limiting grid-connectable power. This scenario becomes significant in the low-voltage resistive feeder. This paper proposes a decentralized control for distributed PV inverters to mitigate voltage rise. Instead of MPPT (maximum power point tracking) mode, the proposed PV inverter is able to curtail its real power and compensate the reactive power according to the impedance at the installation location. The drooped characteristics between the output power and the impedance are developed so that the PV inverters are able to cooperatively suppress voltage rise based on their local voltage measurement only. Therefore, PV inverters are allowed to supply more power to the utility within voltage limitation. Simulations are conducted to guarantee the proposed control on improvement of voltage rise considering different parameter of feeder. A lab-scaled prototype circuit is established to verify effectiveness in a resistive feeder.


2016 ◽  
Vol 40 (2) ◽  
pp. 615-629 ◽  
Author(s):  
Xian-Bo Wang ◽  
Zhi-Xin Yang ◽  
Jun-Xiao Wang

As a prevailing solar energy utilization equipment, the three-phase grid-connected photovoltaic (PV) inverter is widely operated in partially shaded conditions and thus tends to generate multiple local maximum power points on its power-to-voltage and current-to-voltage characteristic curves. In order to identify the global maximum power point (GMPP) quickly and precisely, this paper proposes a ripple-based maximum power point tracking method. It aims to perform the optimization of tracking using the segmented scanning of DC-side voltage. An improved adaptive perturb and observe (AP&O) method is introduced to maximize the solar conversion and to increase working stability. This method applies a hybrid model of fixed and variable step-size perturbation to restrain the fluctuation of PV-side voltage. It belongs to a two-stage GMPP tracking method. That is, when environmental factors such as irradiance and temperature change quickly PV power fluctuates sharply. Correspondingly, the AP&O method tracks the latest maximum power point (MPP) with a large fixed-step voltage reference command. When the PV power fluctuates smoothly under a slow environmental change rate, the algorithm applies multiple small and variable step-size voltage perturbations to vibrate round the location of GMPP. Simulation and experimental results show that this method improves the efficiency of the PV inverter tracking performance. In addition, the stability of DC bus voltage is guaranteed, and the operational stability of the photovoltaic power generation system is improved.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


Author(s):  
Feng Zhang ◽  
Xiaolong Guo ◽  
Xiqiang Chang ◽  
Guowei Fan ◽  
Lianger Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document