Design of High Speed Railway Tunnel and its Construction Method in Abrupt Slope with Loose Rockmass

2014 ◽  
Vol 580-583 ◽  
pp. 1096-1099 ◽  
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Rui Yang ◽  
Chao Ning

This paper mainly deals with the structural design of high speed railway tunnel and its driving method in abrupt slope with loose rockmass, meanwhile summarizes the connection between tunnel portal and bridge abutment in loose rockmass according to complicated landform and geology. The anti-slide piles are adopted to retain the stability of abrupt slope near the tunnel portal. In order to eliminate the risk and cost in tunnel construction, four bench cut method is invented to satisfy the safe excavation of loose rockmass in the tunnel. Composite fiber rockbolt is also employed to keep the stability of working face while driving the tunnel. The innovative tunneling method presented in the paper can be applied to guide the rational design and economical construction of high speed railway tunnels in loose surrounding rock under harsh geological conditions.

2021 ◽  
Vol 325 ◽  
pp. 01005
Author(s):  
Linda Ali ◽  
I Gde Budi Indrawan ◽  
Hendarto Hendarto

This paper presents the investigation of surface geology and subsurface engineering geology to analyze the excavation method and stand-up time of the DK99-DK100 Jakarta-Bandung high-speed railway Tunnel, Indonesia. Rock mass quality, tunnel excavation method, and stand-up time determined using Geological Strength Index (GSI), Basic Quality (BQ) systems, converted to Rock Mass Rating (RMR) and The Japan Society of Civil Engineering (JSCE) for comparison. The result shows that the study area consists of slightly to completely weathered andesite breccia and slightly weathered andesite lava. The rock masses at the tunnel elevation had very poor to poor quality and were associated with high weathering degrees. The recommended rock excavation method based on the GSI is digging. The recommended tunnel excavation method based on RMR is multiple drifts, top heading, and bench, while based on JSCE is bench cut method. The tunnel stand-up time is 30 minutes - 2 hours based on the RMR, while it is predicted to be unstable without support based on the BQ. The recommended design is expected to be applied effectively according to the geological conditions. It is expected to understand better the tunnel excavation method in poor rock masses, especially in Indonesia.


2013 ◽  
Vol 639-640 ◽  
pp. 279-282
Author(s):  
Peng Yin ◽  
Rui Ting Yao ◽  
Xiao Lei Ji

The tunnel involved in this study is a double-track tunnel with a 4113m length and 390m maximum depth which is currently under construction. By analyzing the specific engineering geological and hydro geological conditions and summarizing the past geological prediction techniques, the comprehensive geological prediction methods are adopted in the project, and the accuracy and feasibility of the theory and techniques are verified in the practical construction process. It is concluded that the comprehensive geological prediction methods are conducive to reduce the risks, accelerate the schedule and guarantee the quality of the construction, and provided a good guidance and reference for the tunnel constructions of this kind


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2020 ◽  
Vol 79 (5) ◽  
pp. 2201-2212
Author(s):  
Shunhua Zhou ◽  
Zhiyao Tian ◽  
Honggui Di ◽  
Peijun Guo ◽  
Longlong Fu

2014 ◽  
Vol 716-717 ◽  
pp. 342-346
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Yue Feng Zhou ◽  
Yu Yu

On the basis of different landform and multifarious topography in rugged mountainous area in southwest China, typical tunnel portals for single track tunnels in a new high speed railway line have been presented in the paper. The portal comprises headwall, shed tunnel, bridge abutment and its support. Portal with headwall is suitable for tunnel to resist front earth pressure on high and abrupt slope. Shed tunnel is placed in front of headwall so as to prevent rockfall; its outward part is built into a flared one. Meanwhile, the installation of bridge and its abutment are also included in the portal according to landform in the paper.


2003 ◽  
Vol 87 (7) ◽  
pp. 15-21
Author(s):  
Bert Snijder ◽  
Jan Faber ◽  
Rinus Van Ommeren

Sign in / Sign up

Export Citation Format

Share Document