Effects of Cu-Zn-Ni Electrode during EDM of SUS 304 Material

2014 ◽  
Vol 590 ◽  
pp. 202-206
Author(s):  
Pichai Janmanee ◽  
Suppawat Chuvaree ◽  
Jamkamon Kamonpong

In this study, experiments were performed to study the effects of electrode materials mixed with nickel in electrical discharge machining (EDM) of SUS 304 material. Experiments were constructed using parameters consisting of pulse-on time, pulse-off time, discharge current and electrode polarity, respectively. The analysis of structural features of the surface was accomplished using a scanning electron microscope (SEM) as well as an element analysis created on the surface, after the EDM process, by using Energy-dispersive x-ray spectroscopy (EDS). The results of the experiments found that nickel elements in the electrode material have an effect on the working performance of material removal rate and electrode wear ratio. The electrode wear ratio reduces when nickel elements increase. Moreover, the surface roughness had the lowest level at electrode 15 % nickel element. Thus, electrode wear during the EDM process of nickel element from electrodes and other elements, combined with surface metalworking, becomes a recast layer of nickel.

Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


2015 ◽  
Vol 761 ◽  
pp. 303-307 ◽  
Author(s):  
Laily Suraya ◽  
M.A. Ali ◽  
N.I.S. Hussein ◽  
Mohd Razali Muhamad ◽  
Manshoor Bukhari ◽  
...  

The effect of machining parameters on machining characteristics for aluminium alloy LM6 (Al-Sil2) in Electrical Discharge Machining (EDM) die-sinking is studied. The objective of this project is to determine the relationship between the machining parameters including pulse-on time, pulse-off time, peak current and voltage with the machining characterictics such as Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (Ra). Copper materials having diameter 15mm was chosen as the electrode tool. Design of experimenent using Taguchi technique was employed to design experimental matrix that was used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that current and pulse off time significantly affect MRR, EWR and Ra while pulse on time and voltage are less significant in their effect on machining responses. Results show that using Taguchi as a design matrix, the best setting of optimum value for machining parameters to find the required machining responses can be obtained.


2014 ◽  
Vol 903 ◽  
pp. 51-55 ◽  
Author(s):  
Alexis Mouangue Nanimina ◽  
Ahmad Majdi Abdul Rani ◽  
Mohd Amri Lajis ◽  
Turnad Lenggo Ginta ◽  
T.V.V.L.N. Rao

Shape of workpiece, electrode orientation and flushing system play important role in electrical discharge machining (EDM) process. Low material removal rate and relatively high electrode wear ratio are some of the disadvantages of EDM process. This can be due to the flushing modes. Workpiece shape has a significant effect in effectiveness of dielectric flushing flow and orientation during EDM process. This research work is conducted to analyze the influence of various workpiece shapes. Square cavity, L shape, flat shape and U shape were machined with same cross-section electrode material. Test parameters are material removal rate (MRR) and electrode wear ratio (EWR). Experiment results show slight difference in MRR and EWR values for different shapes. U shape presents the highest MRR and the lowest EWR occurs in flat shape compared to cavity and L shapes. It can be concluded that flat and U shapes result in good EDM machining quality due to good dielectric flow and flushing conditions in the area of EDM machining.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2014 ◽  
Vol 660 ◽  
pp. 43-47
Author(s):  
Amran Ali Mohd ◽  
Suraya Laily ◽  
Aisyah Fatin ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

This paper investigates the performance of brass electrode on the removal of aluminium alloys LM6 (Al-Sil2) in an electrical discharge machining (EDM) die-sinking. The machining parameters such as pulse-on time, pulse-off time and peak current were selected to find the responses on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Brass with diameter of 10mm was chosen as an electrode. Orthogonal array of Taguchi method was used to develop experimental matrix and to optimize the MRR, EWR and Ra. It is found that the current is the most significantly affected the MRR, EWR and Ra while pulse on time, pulse off time and voltage are less significant factor that affected the responses. Percentage optimum value of MRR increases to 3.99%, however EWR and Ra reduce to 3.10% and 2.48% respectively. Thus, it shows that brass having capability to cut aluminium alloys LM6.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


Author(s):  
Satish Giduturi ◽  
Ashok Kumar

Wire Electrical Discharge Machining (WEDM) is a widely accepted non-traditional material removal process used to manufacture components with intricate shapes and profiles. It is considered as a unique adaptation of the conventional EDM process, which uses an electrode to initialize the sparking process. H13 Hot Work Tool Steel has high hot tensile strength, hot wear-resistance and toughness. Good thermal conductivity and insensitiveness to hot cracking, making it suitable not only for hot die applications but also plastic moulds. In this study, it is found that most predominant factors for the maximum material removal rate which is 22.21 mm3/min are current which was found to be 200A and Pulse ON Time 125 µs, however rest four factors (voltage 20V, pulse off time 40µs, wire tension 8N and wire feed 7mm/min) has less impact as compare to the predominant factors. The most predominant factors for Minimum surface roughness which is 0.89µm are wire tension 10N, pulse on time 115µs and servo voltage 60V. However, rest three factors pulse off time 60 µs, peak current 140 A and wire feed 7mm/min has less impact as compare to the predominant factors.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 555-566
Author(s):  
JagadeeswaraRao Maddu ◽  
Buschaiah Karrolla ◽  
Riyaaz Uddien Shaik ◽  
Srikanth Vuppala

In this paper, different optimization techniques such as multi-objective optimization based on ratio analysis, the -nD angle, information divergence and multi-angle optimization methods were considered for comparative study in order to check their variation in results. These four techniques were considered asthese techniques were made from completely different methodologies, such as MOORA, is one of the latest multi-criteria decision-making methods that cover the weakness of other older methods and the latter three (-nD angle, Information Divergence and MAOT) methods are based on trigonometric methodologies. These optimization techniques were carried out using the effect of EDM process parameters viz., material removal rate and surface roughness as output parameters and current, pulse on time, pulse off time and different electrode materials as input process parameters. These parameters were obtained from the experiments modelled according to the Taguchi experimental design procedure in which the L18 orthogonal array was used to perform experimentation with the material of titanium alloy (Ti-6Al-4V). All the optimization techniques have obtained similar results among which -nD angle and Information Divergence technique tend to be easier and understandable for any similar application. The latter two methods avoid complexity and can be used for optimizing any relevant manufacturing process parameters such as the parameters of EDM, additive manufacturing, etc.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 375
Author(s):  
Anh-Tuan Nguyen ◽  
Xuan-Hung Le ◽  
Van-Tung Nguyen ◽  
Dang-Phong Phan ◽  
Quoc-Hoang Tran ◽  
...  

In the current study, an optimization process of powder-mixed electrical discharge machining (PMEDM) process when machining cylindrically shaped parts made of hardened 90CrSi steel is reported. In this study, SiC powder was mixed into the Diel MS 7000 dielectric solution. Additionally, graphite was chosen as the electrode material. The multi-objective functions were minimizing the surface roughness (SR) and electrode wear rate (EWR) and maximizing the material removal rate (MRR). The used input parameters of the optimization process included the powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo voltage. A combination between the Taguchi method and the grey relation analysis (GRA) method with the support of Minitab R19 software was used to design the experiment and analyze the results. It was found that the optimal set of process parameters that can satisfy the above responses are Cp of 0.5 g/L, Ton of 8 µs, Toff of 8 µs, IP of 5 A, and SV of 4 V.


Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


Sign in / Sign up

Export Citation Format

Share Document