Electrical and Magnetoelectric Properties of (Y)Li0.5Ni0.7Zn0.05Fe2O4 + (1-Y)Ba0.5Sr0.5TiO3 Magnetoelectric Composites

2014 ◽  
Vol 592-594 ◽  
pp. 826-830 ◽  
Author(s):  
S.U. Durgadsimi ◽  
S.S. Chougule ◽  
S.S. Bellad

(y) Li0.5Ni0.7Zn0.05Fe2O4+ (1-y) Ba0.5Sr0.5TiO3magnetoelectric composites with y = 0.1, 0.3 and 0.5 were prepared by a conventional standard double sintering ceramic technique. X-ray diffraction analysis confirmed the phase formation of ferrite, ferroelectric and their composites. logρdcVs 1/T graphs reveal that the dc resistivity decreases with increasing temperature exhibiting semiconductor behavior. The plots of logσacVs logω2are almost linear indicating that the conductivity increases with increase in frequency i.e. conductivity in the composites is due to small poloron hopping. Dielectric constant (έ) and dielectric loss (tan δ) were studied as a function of frequency in the range 100Hz–1MHz which reveal the normal dielectric behavior except the composite with y = 0.1and as a function of temperature at four fixed frequencies (i.e. 100Hz, 1KHz, 10KHz, 100KHz). ME voltage coefficient decreases with increase in ferrite content and was observed to be maximum of about 7.495 mV/cmOe for S1i.e. (0.1) Li0.5Ni0.7Zn0.05Fe2O4+ (0.9) Ba0.5Sr0.5TiO3composite.

2011 ◽  
Vol 80-81 ◽  
pp. 271-275
Author(s):  
You Xiang Ye ◽  
Sheng Hua Zhou ◽  
Yun Zhou

Lead-free multiferroic magnetoelectric composites were prepared by incorporating the dispersed 0.4CoFe2O4ferromagnetic nanoparticles into 0.6(K0.5Na0.5)NbO3-LiSbO3ferroelectric micromatrix. From the x-ray diffraction analysis, it was observed that almost no chemical reaction occurs between the ferrite and the ferroelectric materials used to form the composite. Dielectric properties as a function of frequency were measured. The magnetoelectric couple effect was given as a function of magnetic field with a maximum magnetoelectric voltage coefficient of 15.01mV·cm-1·Oe-1at 1kHz, which was a very high value in the lead-free magnetoelectric composites system for the potential use on actuators and sensors, etc.


2006 ◽  
Vol 13 (04) ◽  
pp. 479-484 ◽  
Author(s):  
MAGED S. SOBHY

Nominal compositions of Ni x Ti 1-x Fe 2 O 5-δ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by a solid state reaction using stoichiometric amounts of Fe 2 O 3/ TiO 2 system and NiO as a dopant. The effects of small substitution of Ni ions on the electrical and structural properties were studied for the above system. The X-ray diffraction patterns revealed that the ferroelectric phase of iron titanate and the spinel ferrite phase of Ni -ferrite having a single phase at x = 0 and 1, respectively. The substitution of Ni ions increases the average value of lattice constant aav. Solid–solid interaction took place between the ternary oxides at 1200°C for 4 h yielding a new phase of NiTiO 3. The presence of the three phases was confirmed by X-ray diffraction technique. The resultant compositions have nanocrystallites with average crystalline size "D av " in the range 100–300 nm. The DC electrical resistivity ρ, Curie temperature TC and activation energies for electric conduction around TC region increase as Ni ion substitution increases. The ferrite samples have a semiconductor behavior where electrical resistivity ρ decreases on increasing temperature. The activation energy for electrical conduction was affected by both the ratio "ferroelectric/ferrite" and the position of the Curie temperatures in the compositions depending on the ( Ni , Ti ) to Fe ratio.


2016 ◽  
Vol 34 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Nusrat Jahan ◽  
Faruque-uz-Zaman Chowdhury ◽  
A.K.M Zakaria

AbstractPolycrystalline Cr substituted Ni ferrites [NiCrxFe2−xO4(0.0 ≤ x ≤ 1.0)] were synthesized by conventional ceramic method and sintered at 1350 °C in air. X-ray diffraction (XRD) patterns showing sharp peaks confirmed the formation of single phase cubic spinel structure. The lattice parameters of the samples were determined from the XRD data using Nelson-Riley extrapolation technique. They were found to decrease with increasing Cr concentration obeying Vegard’s law. X-ray density, bulk density and porosity were also calculated from the XRD data. The variation of DC resistivity with temperature was measured by two-probe method. The DC resistivity was found to decrease with increasing temperature indicating the semiconducting nature of the samples. Activation energy was calculated from the Arrhenius plot. AC resistivity, dielectric constant and loss tangent were measured in the frequency range of 1 kHz to 120 MHz at room temperature.


2018 ◽  
Vol 60 (9) ◽  
pp. 1699
Author(s):  
В.Н. Шут ◽  
В.М. Лалетин ◽  
С.Р. Сырцов ◽  
В.Л. Трубловский ◽  
Ю.В. Медведева ◽  
...  

AbstractThe phase composition, microstructure, and dielectric, ferroelectric, magnetic, and magnetoelectric properties of bulk ceramic (1 – x )PZT– x NiFe_1.9Co_0.02О_4 – δ composites with 3–0 connectivity have been studied. Using X-ray diffraction and electron microscopy, it has been established that the ferrimagnetic (spinel- like) and ferroelectric (tetragonal perovskite-like) phases separately exist in the composites of all compositions. The simultaneous existence of ferroelectric and ferrimagnetic properties in the composites is confirmed by measuring their P ( E ) and σ( B ) hysteresis loops and studying the temperature dependences of dielectric and magnetic properties. The synthesized composites have high magnetoelectric characteristics: their voltage coefficient at x = 0.4 is 215 mV/A at a frequency of 1 kHz and 130 V/A at an electromechanical resonance frequency of 380 kHz.


1997 ◽  
Vol 493 ◽  
Author(s):  
S. P. Alpay ◽  
A. S. Prakash ◽  
S. Aggarwal ◽  
R. Ramesh ◽  
A. L. Roytburd ◽  
...  

ABSTRACTA PbTiO3(001) film grown on MgO(001) by pulsed laser deposition is examined as an example to demonstrate the applications of the domain stability map for epitaxial perovskite films which shows regions of stable domains and fractions of domains in a polydomain structure. X-ray diffraction studies indicate that the film has a …c/a/c/a… domain structure in a temperature range of °C to 400°C with the fraction of c-domains decreasing with increasing temperature. These experimental results are in excellent agreement with theoretical predictions based on the stability map.


2012 ◽  
Vol 19 (03) ◽  
pp. 1250030
Author(s):  
K. BI ◽  
Y. G. WANG

Magnetoelectric (ME) coupling in layered structures of magnetostrictive and piezoelectric phases are mediated by mechanical deformation and depends strongly on the interface conditions. Ni -lead zirconium titanate- Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure of the electroless deposited Ni layer was characterized by X-ray diffraction. The cross-section of the Ni/PZT layers was investigated using scanning electron microscopy. The value of ME voltage coefficient (αE,31) increases as the interface roughness increases. The maximum of αE,31 for the Ni/PZT/Ni trilayers polarized after electroless deposition is higher than that for the Ni/PZT/Ni trilayers polarized before electroless deposition. It is essential to optimize the interface and the polarization to obtain higher ME voltage coefficient.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


1994 ◽  
Vol 08 (10) ◽  
pp. 591-603
Author(s):  
U. SINHA ◽  
S. SATHAIAH ◽  
R. N. SONI ◽  
H. D. BIST ◽  
S. C. MATHUR ◽  
...  

The X-ray diffraction (XRD), ac susceptibility, dc resistivity, and scanning electron microscopy (SEM) measurements on Bi 2−x Pb x Sr 2 Ca 2 Cu 3 O 10+δ (x = 0.0, 0.2, 0.4, and 0.6) superconductors have been correlated with the Raman scattering studies. Remarkable increases in the transition temperature and percentage volume of high T c phase are found till x = 0.4. Raman spectra also reveal dramatic changes at x = 0.4 in the phonon modes at 625 and 460 cm −1 associated with oxygen vibrations in BiO plane and apical oxygen of CuO 5 pyramid, respectively. The observed changes have been attributed to the phenomenon of oxygen redistribution among various layers. Optimum solubility limit of Pb substitution is found to be x = 0.4.


2014 ◽  
Vol 6 (3) ◽  
pp. 399-406 ◽  
Author(s):  
M. Z. Ansar ◽  
S. Atiq ◽  
K. Alamgir ◽  
S. Nadeem

Magnetite nanoparticles have been prepared by using sol-gel auto combustion technique. The samples are prepared by using different concentrations of fuel. Structural characterization has been done using X-Ray diffraction technique and it was observed that fuel concentration can affect the structural properties of Magnetite nanoparticles. The dielectric properties for all the samples such as dielectric constant (??), dielectric tangent loss (tan ?) and dielectric loss factor (??) have been studied as a function of frequency and temperature in the range 10 Hz–20 MHz  and it was found that these nanoparticles can be used in microwave devices because of their good dielectric behavior. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.17938 J. Sci. Res. 6 (3), 399-406 (2014)


2001 ◽  
Vol 674 ◽  
Author(s):  
Xiang-Cheng Sun ◽  
J. A. Toledo ◽  
S. Galindo ◽  
W. S. Sun

ABSTRACTFerromagnetic properties and nanocrystallization process of soft ferromagnetic (Fe0.99Mo0.01)78Si9B13 ribbons are studied by transmission electron microscope (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy (MS), differential scanning calorimeters (DSC) and magnetization measurements. The Curie and crystallization temperature are determined to be TC=665K and Tx = 750K, respectively. The Tx value is in well agreement with DSC measurement results. X-ray diffraction patterns had shown a good reconfirm of two metastable phases (Fe23B6, Fe3B) were formed under in-situ nanocrystallization process. Of which these metastable phases embedded in the amorphous matrix have a significant effect on magnetic ordering. The ultimate nanocrystalline phases of α-Fe (Mo, Si) and Fe2B at optimum annealing temperature had been observed respectively. It is notable that the magnetization of the amorphous phase decreases more rapidly with increasing temperature than those of nanocrystalline ferromagnetism, suggesting the presence of the distribution of exchange interaction in the amorphous phase or high metalloid contents.


Sign in / Sign up

Export Citation Format

Share Document