scholarly journals Frequency and Temperature Dependent Dielectric Response of Fe3O4 Nano-crytallites

2014 ◽  
Vol 6 (3) ◽  
pp. 399-406 ◽  
Author(s):  
M. Z. Ansar ◽  
S. Atiq ◽  
K. Alamgir ◽  
S. Nadeem

Magnetite nanoparticles have been prepared by using sol-gel auto combustion technique. The samples are prepared by using different concentrations of fuel. Structural characterization has been done using X-Ray diffraction technique and it was observed that fuel concentration can affect the structural properties of Magnetite nanoparticles. The dielectric properties for all the samples such as dielectric constant (??), dielectric tangent loss (tan ?) and dielectric loss factor (??) have been studied as a function of frequency and temperature in the range 10 Hz–20 MHz  and it was found that these nanoparticles can be used in microwave devices because of their good dielectric behavior. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.17938 J. Sci. Res. 6 (3), 399-406 (2014)

2013 ◽  
Vol 748 ◽  
pp. 65-69
Author(s):  
Asif Mahmood ◽  
Yousef Al-Zeghayer

Chemically derived auto-combustion technique is employed to synthesize the Zn0.95-xFe0.05AlxO (x=00.07 in 0.02 increment) nanocrystallites. X-ray diffraction studies of all compositions revealed the phase pure wurtzite crystal structure with space group P63mc. The lattice parameters and crystallite size is changed with doping of Al attributed to the diversity in size of ionic radii. Temperature dependent electrical resistivity shows a decreased trend with the rise of temperature, confirming the semiconductor nature of compositions. The lower resistivity and enhanced saturation magnetization values in Al doped compositions correspond to the increase in density of carriers. Carriers mediated RKKY interactions are found to observe for enhancement of magnetization.


2020 ◽  
Vol 126 (7) ◽  
Author(s):  
Mohammad Abu Haija ◽  
Mariem Chamakh ◽  
Israa Othman ◽  
Fawzi Banat ◽  
Ahmad I. Ayesh

Abstract Spinel ferrite nanoparticles can be easily retrieved and utilized for multiple cycles due to their magnetic properties. In this work, nanoparticles of a ZnxCu1-xFe2O4 composition were synthesized by employing a sol–gel auto-combustion technique. The morphology, composition, and crystal structure were examined using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The produced nanoparticles are in the range of 30–70 nm and manifest spinel cubic structure. The nanoparticles were tested for their sensitivity to H2 and H2S gases, and the Cu-based spinel ferrite nanoparticles were found the most sensitive and selective to H2S gas. Their enhanced response to H2S gas was attributed to the production of metallic CuFeS2 that manifest higher electrical conductivity as compared with CuFe2O4. The fabricated sensors are functional at low temperatures, and consequently, they need low operational power. They are also simple to fabricate with appropriate cost.


2013 ◽  
Vol 209 ◽  
pp. 31-34 ◽  
Author(s):  
A.B. Shinde ◽  
G.H. Kale ◽  
V.N. Dhage ◽  
P.K. Gaikwad ◽  
K.M. Jadhav

Nano-particles of (38 nm size) cobalt ferrite (CoFe2O4) were synthesized by sol-gel auto-combustion technique using high purity metal nitrates and glycine as a fuel. The characterization studies were conducted by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The analysis of X-ray diffraction pattern suggests that, the prepared CoFe2O4 spinel ferrite possess single phase cubic spinel structure. The most intense peak (311) of the XRD pattern was used to determine the crystallite size. lattice constant and X-ray density were calculated by using XRD data. The values of lattice constant and X-ray density are found to in the reported range but slightly higher as compared to bulk CoFe2O4 sample. The surface morphology of the CoFe2O4samples was examined through scanning electron microscopy (SEM) technique. The result of SEM analysis shows that grain size is of the order of 62 nm. The CoFe2O4 nano-particle exhibit ferromagnetic behavior having saturation magnetization (Ms) and coercivity (Hc) values in the range of 83 emu/gm and 1381 Oe respectively. The high values of saturation magnetization and coercivity gives the evidence of nanocrystalline nature of the prepared CoFe2O4 spinel ferrite.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


Author(s):  
S. D. Balsure

Higher magnetic Mn doped Zn-Cr oxide nanoparticles with general compositional formula MxZn0.95-xCr0.05O have been synthesized by using sol-gel auto combustion technique. Room temperature X-ray diffraction (XRD) technique has been employed to study the structural and microstructural parameters of the as-prepared samples. XRD analysis confirms the phase purity and hexagonal wurtzite structure of all the samples. Replacement of Zn2+ ions by Mn2+ ions shifts peak positions slightly towards the lower angles which in turn expands the lattice lengths ‘a’ from 3.2487 to 3.2528 Å and ‘c’ from 5.2043 to 5.2118 Å. Crystallite size obtained from Scherrer equation was confirmed by Williamson – Hall (W-H) and size – strain plot methods (SSP). Both W-H and SSP methods reveals the tensile type strain for undoped sample and comprehensive type strain for Mn2+ doped samples. Magnetic properties were investigated by using vibrating sample magnetometer. Diluted ferromagnetic behaviour is observed for all the samples and saturation magnetization (MS) increases from 0.0514 to 0.1163 emu/gm. Two-probe technique was employed to understand the dielectric behaviour of the samples as a function of frequency. At lower frequency region, both dielectric constant () and dielectric loss tangent (tan ) shows higher values and decreases with the increasing applied frequency.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012040
Author(s):  
Laith Saheb ◽  
Tagreed M. Al-Saadi

Abstract This study includes the preparation of novel nano ferrite (Zn0.7 Mn0.3-x Cex Fe2O4) by using the auto combustion technique. For the following molar values, the percentage x was calculated: 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. The nano-ferrite was calcined for 2 hours at 500°C. The energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD) and field emission scanning electron microscopy FE-SEM was used to examine structural, morphological, and sensing properties. The spinel cubic structure was revealed by XRD findings. The particle distribution was shown to contain voids by FE-SEM. The testing of sensing characteristics to NH3 gas indicated that the synthesized nano-ferrite has a small response time ranging from (15.3-25.2) s as well as a small recovery time between (36-58.5) s, also has a higher sensitivity of about 72.23%.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


Sign in / Sign up

Export Citation Format

Share Document