Effects of UV-HEPA Air Filters on Air Quality Status inside a Public Museum in Malaysia

2014 ◽  
Vol 607 ◽  
pp. 700-708
Author(s):  
Marzuki Ismail ◽  
Nurul Hanna Attiya Baharuddin ◽  
Anis Syafizee Anuar ◽  
Azrin Suroto

Poor indoor air quality is a major threat towards workers since the office or office-like environment is now the workplace for the majority of the workforce in Malaysia. Workers in office buildings frequently have unexplained work-related symptoms or combinations of symptoms but evidence suggests that microbial contamination plays a part. Ultraviolet germicidal irradiation lights with high efficiency particulate air filter (UV-HEPA) are recognized for eradicating biological contaminants and capturing particles in indoor environments. Here, the effectiveness of UV-HEPA purification unit was obtained in two selected workplaces i.e. laboratory of conservation and laboratory of natural resources. Results show that there exist significance difference (P<0.05) on indoor air quality between pre-installation and post-installations of UV-HEPA filter in both selected room. Furthermore, it shows that UV-HEPA filter is effective in removing indoor air pollutants and improves the air quality. The use of UVGI lights with HEPA filter resulted in significant reduction in the concentration of microbes and respirable particulates within the ventilation systems. Keywords:indoorairquality,microbes,respirableparticulates,UV-HEPApurificationunit

2011 ◽  
Vol 20 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Min Jeong Kim ◽  
Yong Su Kim ◽  
Abtin Ataei ◽  
Jeong Tai Kim ◽  
Jung Jin Lim ◽  
...  

The purpose of this study was to evaluate changes in the concentration of air pollutants in the indoor environments, which could be caused by seasonal changes or changes in operating conditions of subway metro stations. In fact, there are many different types of pollution that can cause contamination in subway stations, and changes in operating conditions can also lead to changes in the indoor air quality (IAQ). Therefore, in order to establish a proper management of IAQ, it would be necessary to evaluate the changes in IAQ according to the changes in conditions. To do this, the present study used a multivariate analysis of variance (MANOVA). The results of testing the hypothesis proved that two groups, divided by the condition of a platform screen door (PSD) system, could differ statistically. Furthermore, those multidimensional differences were caused by installation of a PSD system. When applied to a real-time tele-monitoring system, MANOVA could clearly identify the daily and weekly variations of IAQ in the subway station, as well as the PSD system’s condition. Accordingly, this method could be useful for developing a multivariate system to statistically evaluate the experimental IAQ results in order to optimise operating conditions in a subway metro station to improve IAQ, and to minimise adverse health effects on passengers by exposure to harmful substances.


2020 ◽  
Vol 41 (1) ◽  
pp. 363-380 ◽  
Author(s):  
Liqiao Li ◽  
Yan Lin ◽  
Tian Xia ◽  
Yifang Zhu

With the rapid increase in electronic cigarette (e-cig) users worldwide, secondhand exposure to e-cig aerosols has become a serious public health concern. We summarize the evidence on the effects of e-cigs on indoor air quality, chemical compositions of mainstream and secondhand e-cig aerosols, and associated respiratory and cardiovascular effects. The use of e-cigs in indoor environments leads to high levels of fine and ultrafine particles similar to tobacco cigarettes (t-cigs). Concentrations of chemical compounds in e-cig aerosols are generally lower than those in t-cig smoke, but a substantial amount of vaporized propylene glycol, vegetable glycerin, nicotine, and toxic substances, such as aldehydes and heavy metals, has been reported. Exposures to mainstream e-cig aerosols have biologic effects but only limited evidence shows adverse respiratory and cardiovascular effects in humans. Long-term studies are needed to better understand the dosimetry and health effects of exposures to secondhand e-cig aerosols.


2020 ◽  
pp. 1420326X1990021 ◽  
Author(s):  
Ahu Aydogan ◽  
Ryan Cerone

Although well-established technologies can remove certain toxins from indoor environments, methods capable of eliminating all of them do not yet exist. Biological methods, however, which are based on plants and their associated microorganisms, could hold significant promise. To achieve high toxic remediation, utilization of the soil microorganisms in the root zone of the plant is vital. Moreover, evidence suggests that in addition to cleaning the air, plants in indoor environments offer psychological, physiological and cognitive benefits. This paper provides an overview of the effects of plants on indoor air quality on the broader benefits of incorporating vegetation into indoor environments.


2018 ◽  
Vol 33 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Harriet Whiley ◽  
Sharyn Gaskin ◽  
Tiffany Schroder ◽  
Kirstin Ross

AbstractConcerns regarding indoor air quality, particularly the presence of fungi and moulds, are increasing. The potential for essential oils to reduce, control or remove fungi, is gaining interest as they are seen as a “natural” alternative to synthetic chemical fungicides. This review examines published research on essential oils as a method of fungal control in indoor environments. It was difficult to compare the relative performances of essential oils due to differences in research methods and reporting languages. In addition, there are limited studies that scale up laboratory results and assess the efficacy of essential oils within building environments. However, generally, there appears to be some evidence to support the essential oils clove oil, tea tree oil, oregano, thyme and lemon as potential antifungal agents. Essential oils from heartwood, marjoram, cinnamon, lemon basil, caraway, bay tree, fir, peppermint, pine, cedar leaf and manuka were identified in at least one study as having antifungal potential. Future studies should focus on comparing the effectiveness of these essential oils against a large number of fungal isolates from indoor environments. Studies will then need to focus on translating these results into realistic application methods, in actual buildings, and assess the potential for long-term antifungal persistence.


2012 ◽  
Vol 506 ◽  
pp. 23-26
Author(s):  
P.A.F. Rodrigues ◽  
S.I.V. Sousa ◽  
Maria José Geraldes ◽  
M.C.M. Alvim-Ferraz ◽  
F.G. Martins

Several factors affect the indoor air quality, among which ventilation, human occupancy, cleaning products, equipment and material; they might induce the presence of aerosols (or bioaerosols in the presence of biological components) nitrogen oxides, ozone, carbon monoxide and dioxide, volatile organic compounds, radon and microorganisms. Microbiological pollution involves hundreds of bacteria and fungi species that grow indoors under specific conditions of temperature and humidity. Exposure to microbial contaminants is clinically associated with allergies, asthma, immune responses and respiratory infections, such as Legionnaires Disease and Pontiac Feaver, which are due to contamination byLegionella pneumophila. Legionnaire's Disease has increased over the past decade, because of the use of central air conditioning. In places such as homes, kindergartens, nursing homes and hospitals, indoor air pollution affects population groups that are particularly vulnerable because of their health status or age, making indoor air pollution a public health issue of high importance. Therefore, the implementation of preventive measures, as the application of air filters, is fundamental. Currently, High Efficiency Particulate Air (HEPA) filters are the most used to capture microorganisms in ventilation, filtration and air conditioning systems; nevertheless, as they are not completely secure, new filters should be developed. This work aims to present how the efficiency of a textile nanostructure in a non-woven material based on synthetic textiles (high hydrophobic fibers) incorporating appropriate biocides to controlLegionella pneumophila, is going to be measured. These bioactive structures, to be used in ventilation systems, as well as in respiratory protective equipment, will reduce the growth of microorganisms in the air through bactericidal or bacteriostatic action. The filter nanostructure should have good air permeability, since it has to guarantee minimum flows of fresh air for air exchange as well as acceptable indoor air quality.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1320
Author(s):  
Chih-Pei Hu ◽  
Jen-Hsiung Cheng

People spend about 80–90% of their time in indoor environments, and poor indoor air quality (IAQ) can seriously endanger people’s health, work quality, and efficiency. The Taiwan Government began regulating IAQ in 2011 and implemented the self-managed IAQ certification in 2021. Before the Taiwan Government officially implemented the certification, we conducted a questionnaire survey from 26 to 27 September 2020. Moreover, this survey selected Banqiao and Wuri High-Speed Rail Plaza as the survey sites and completed 337 valid questionnaires. According to the hierarchical regression results, this research found the following: firstly, IAQ certification complies with international standards and has continuous monitoring and information disclosure methods, both of which are key factors affecting people’s willingness to consume; secondly, the respondents, who are female, familiar with the regulations, and living in the northern Taiwan area, have more willingness to consume in the certificated places.


2020 ◽  
Vol 19 (3) ◽  
pp. 288-300
Author(s):  
Ahmet Cosgun ◽  

Individuals have to work in collective living spaces which might be indoor or outdoor areas. In indoor works, people spend approximately 90% of their time in a closed space. There are many parameters affecting indoor air quality. Among these, for indoor and outdoor, important parameters can be listed as carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO₂), particles, nitrogen oxides (NOx), various microorganisms, harmful allergens, and powders. Some health problems might emerge in people who stay in indoor environments for a long time. For instance, newborns and infants are more likely to stay indoors. It is the primary reason for occurring many acute and chronic diseases at an early age, as babies and children are more sensitive to environmental pollutants. Recently published studies, which report that appendicitis failures might be fatal and air pollution can increase the rate of these failures, are remarkable. On the other hand, there are many negative effects of polluted indoor air on human health such as attention deficit and excessive daytime sleepiness. Moreover, the negative effects of this kind of indoor air quality on human learning and perception can not be neglected. The researchers focusing on indoor air quality are conducting studies showing that air pollution has an effect on physical activity and neurological interaction in humans. Even though air pollutants in outdoor air content were evaluated with fuzzy logic method in many studies, there are quite few studies using the fuzzy approach for indoor air quality. In this study, through the standard formula developed by the United States Environmental Protection Agency (EPA), calculations were made using fuzzy logic in MATLAB utilizing air quality index. In the study, indoor air quality measurement parameters were evaluated with the “Mamdani” method used in fuzzy logic. In the study, the model suitable for the logic structure created with the fuzzy tool in MATLAB was analyzed with the help of Mamdani method, and the suitability of evaluating the indoor air quality with artificial intelligence was investigated. A set of suggestions has been made evaluating and criticizing the results


Lung India ◽  
2015 ◽  
Vol 32 (5) ◽  
pp. 473 ◽  
Author(s):  
VannanKandi Vijayan ◽  
Haralappa Paramesh ◽  
SundeepSantosh Salvi ◽  
AlpaAnil Kumar Dalal

Sign in / Sign up

Export Citation Format

Share Document