scholarly journals Determination of indoor air quality in collective living spaces utilizing Fuzzy logic analysis

2020 ◽  
Vol 19 (3) ◽  
pp. 288-300
Author(s):  
Ahmet Cosgun ◽  

Individuals have to work in collective living spaces which might be indoor or outdoor areas. In indoor works, people spend approximately 90% of their time in a closed space. There are many parameters affecting indoor air quality. Among these, for indoor and outdoor, important parameters can be listed as carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO₂), particles, nitrogen oxides (NOx), various microorganisms, harmful allergens, and powders. Some health problems might emerge in people who stay in indoor environments for a long time. For instance, newborns and infants are more likely to stay indoors. It is the primary reason for occurring many acute and chronic diseases at an early age, as babies and children are more sensitive to environmental pollutants. Recently published studies, which report that appendicitis failures might be fatal and air pollution can increase the rate of these failures, are remarkable. On the other hand, there are many negative effects of polluted indoor air on human health such as attention deficit and excessive daytime sleepiness. Moreover, the negative effects of this kind of indoor air quality on human learning and perception can not be neglected. The researchers focusing on indoor air quality are conducting studies showing that air pollution has an effect on physical activity and neurological interaction in humans. Even though air pollutants in outdoor air content were evaluated with fuzzy logic method in many studies, there are quite few studies using the fuzzy approach for indoor air quality. In this study, through the standard formula developed by the United States Environmental Protection Agency (EPA), calculations were made using fuzzy logic in MATLAB utilizing air quality index. In the study, indoor air quality measurement parameters were evaluated with the “Mamdani” method used in fuzzy logic. In the study, the model suitable for the logic structure created with the fuzzy tool in MATLAB was analyzed with the help of Mamdani method, and the suitability of evaluating the indoor air quality with artificial intelligence was investigated. A set of suggestions has been made evaluating and criticizing the results

2016 ◽  
Vol 11 (4) ◽  
pp. 284-295 ◽  
Author(s):  
Joseph M. Seguel ◽  
Richard Merrill ◽  
Dana Seguel ◽  
Anthony C. Campagna

Many health care providers are concerned with the role environmental exposures play in the development of respiratory disease. While most individuals understand that outdoor air quality is important to their health status, many are unaware of the detrimental effects indoor air pollution can potentially have on them. The Environmental Protection Agency (EPA) regulates both outdoor and indoor air quality. According to the EPA, indoor levels of pollutants may be up to 100 times higher than outdoor pollutant levels and have been ranked among the top 5 environmental risks to the public. There has been a strong correlation between air quality and health, which is why it is crucial to obtain a complete environmental exposure history from a patient. This article focuses on the effects indoor air quality has on the respiratory system. Specifically, this article will address secondhand smoke, radon, carbon monoxide, nitrogen dioxide, formaldehyde, house cleaning agents, indoor mold, animal dander, and dust mites. These are common agents that may lead to hazardous exposures among individuals living in the United States. It is important for health care providers to be educated on the potential risks of indoor air pollution and the effects it may have on patient outcomes. Health problems resulting from poor indoor air quality are not easily recognized and may affect a patient’s health years after the onset of exposure.


2011 ◽  
Vol 20 (1) ◽  
pp. 187-197 ◽  
Author(s):  
Min Jeong Kim ◽  
Yong Su Kim ◽  
Abtin Ataei ◽  
Jeong Tai Kim ◽  
Jung Jin Lim ◽  
...  

The purpose of this study was to evaluate changes in the concentration of air pollutants in the indoor environments, which could be caused by seasonal changes or changes in operating conditions of subway metro stations. In fact, there are many different types of pollution that can cause contamination in subway stations, and changes in operating conditions can also lead to changes in the indoor air quality (IAQ). Therefore, in order to establish a proper management of IAQ, it would be necessary to evaluate the changes in IAQ according to the changes in conditions. To do this, the present study used a multivariate analysis of variance (MANOVA). The results of testing the hypothesis proved that two groups, divided by the condition of a platform screen door (PSD) system, could differ statistically. Furthermore, those multidimensional differences were caused by installation of a PSD system. When applied to a real-time tele-monitoring system, MANOVA could clearly identify the daily and weekly variations of IAQ in the subway station, as well as the PSD system’s condition. Accordingly, this method could be useful for developing a multivariate system to statistically evaluate the experimental IAQ results in order to optimise operating conditions in a subway metro station to improve IAQ, and to minimise adverse health effects on passengers by exposure to harmful substances.


Arsitektura ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 167
Author(s):  
Dady Wicaksono ◽  
Sugini Sugini

<p class="Abstract"><em><span lang="EN-GB">The air pollution problem had become a big problem for many cities in the world. In line with the rapid development of these cities, the concept of sustainability also continues to develop with various solutions to overcome existing problems. To solve the air pollution problem, the authors evaluated the selected building object, The Khabele School, to see the extent of the building's contribution to overcoming the air pollution problem.  The evaluation was carried out based on the DGNB (German Sustainable Building Council) certification system, the variables measured were biotope area factor (BAF), indoor air quality, daylight factor, and zero-carbon mobility. The results reveal that indoor air quality and daylight factors could meet the desired standards, while BAF and zero-carbon mobility had not met the standard. Based on theoretical and empirical studies, this paper discussed alternative design strategies, to improve the quality of the building, so that they can contribute more to overcoming air pollution problem.</span></em></p>


Author(s):  
Mohd Saleem ◽  
Mohd Adnan Kausar ◽  
Fahmida Khatoon ◽  
Sadaf Anwar ◽  
Syed Monowar Alam Shahid ◽  
...  

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.


2019 ◽  
Vol 43 (2) ◽  
pp. 121-142
Author(s):  
Andrea Ferrantelli ◽  
Camilla Vornanen-Winqvist ◽  
Milla Mattila ◽  
Heidi Salonen ◽  
Jarek Kurnitski

Moisture excess in buildings constitutes a complex problem affecting indoor air quality, energy consumption and the lifetime of the building envelope. We investigate the effect on moisture transfer in structures as a positive pressure is applied inside the enclosure. It is found that, contrary to established belief, the positive pressure does not induce any negative effects on the structures’ moisture content in normally ventilated classrooms, even with high occupancy. Our case study consists of a school building in Finland, subject to temperature and relative humidity measurements after a small (5–7 Pa) positive pressure was realized through ventilation control. We first address analytically the moisture excess generated inside the classrooms for 14 days, using dynamical balance equations that account for both ventilation effects and occupants’ moisture release in the environment. It is found that the average moisture excess is very small, largely below 1 g/m3, even for ventilation rates that are half the design value. We also examine the moisture performance of the envelope, by addressing the moisture migration at upper and lower joints of the external walls for both measured and design values of the indoor absolute humidity (AH). A coupled numerical model of diffusion and convection shows that moisture accumulation in the envelope and the according stresses are negligible for any realistic AH values. This result is in agreement with field measurements at the school. In conclusion, it seems that applying a small overpressure in a well-ventilated school building during a standard service period resulted in no accumulation inside the external walls, even at high occupancy and with low ventilation. Remarkably, it slightly dried out the moisture content in structures under actual occupancy conditions. The positive pressure has accordingly no negative effects on moisture performance, and is capable to guarantee a good indoor air quality as well.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Ewa Brągoszewska ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

Air pollution, a by-product of economic growth, generates an enormous environmental cost in Poland. The issue of healthy living spaces and indoor air quality (IAQ) is a global concern because people spend approximately 90% of their time indoors. An increasingly popular method to improve IAQ is to use air purifiers (APs). Indoor air is often polluted by bioaerosols (e.g., viruses, bacteria, fungi), which are a major concern for public health. This work presents research on culturable bacterial aerosol (CBA) samples collected from dwellings with or without active APs during the 2019 summer season. The CBA samples were collected using a six-stage Andersen cascade impactor (ACI). The CBA concentrations were expressed as Colony Forming Units (CFU) per cubic metre of air. The average concentration of CBA in dwellings when the AP was active was 450–570 CFU/m3, whereas the average concentration when the AP was not active was 920–1000 CFU/m3. IAQ, when the APs were active, was on average almost 50% better than in cases where there were no procedures to decrease the concentration of air pollutants. Moreover, the obtained results of the particle size distribution (PSD) of CBA indicate that the use of APs reduced the proportion of the respirable fraction (the particles < 3.3 µm) by about 16%. Life cycle assessment (LCA) was used to assess the ecological cost of air purification. Our conceptual approach addresses the impact of indoor air pollution on human health and estimates the ecological cost of APs and air pollution prevention policies.


2016 ◽  
Vol 89-90 ◽  
pp. 138-146 ◽  
Author(s):  
Zheming Tong ◽  
Yujiao Chen ◽  
Ali Malkawi ◽  
Gary Adamkiewicz ◽  
John D. Spengler

Sign in / Sign up

Export Citation Format

Share Document