Development of an Oscillating Drum Granulator Prototype for Cassava Pearl

2014 ◽  
Vol 619 ◽  
pp. 145-149
Author(s):  
Muthita Chiaranairungroj ◽  
Montira Nopharatana ◽  
Annop Nopharatana ◽  
Suvaluk Asavasanti

This paper presents an oscillating drum granulator prototype for cassava pearl. Effects of filling degree and oscillating speed on cassava pearl granulation were investigated. A stainless steel drum granulator with 50 cm diameter and 16 cm length was developed. The stainless steel joints with a cotton-transmitting belt were used to connect the drum to an oscillator arm to simulate the flexibility of a traditional cloth cradle granulator. The filling degree and oscillating speed were varied from 1, 2 and 3 kg and from 87 and 100 rpm, respectively. During granulation, samples were taken at 4, 8, 12 and 16 minutes to determine the particle size distribution, mass mean diameter, granule density, hardness and sphericity. The results indicated that both the filling degree and oscillating speed played an important role on cassava pearl granulation. The filling degree of 3 kg and oscillating speed of 100 rpm was suggested since it yielded similar properties of cassava pearls to those obtained from the traditional process. This prototype granulator could successfully produce 2.4-mm pearls with comparable characteristics to the standards. Comparing to a traditional granulator, the oscillating drum granulator is easier to clean and more GMP compliant.

Author(s):  
Adam J. Cooper ◽  
Olivia C. G. Tuck ◽  
Samuel A. J. Armson ◽  
Michael Preuss

Abstract If advanced manufacturing technologies are to be adopted over conventional manufacturing processes in the nuclear industry — the most regulatory challenging industry — rigorous fundamental studies that develop underpinning knowledge, materials performance data, and predictive capabilities are essential. Herein we have employed the use of electron backscatter diffraction (EBSD) and 3D X-ray computed tomography (XCT) to characterize microstructure evolution and porosity consolidation during the early stages of powder metallurgy hot isostatic pressing (PM-HIP). The data herein highlight the mechanisms through which the powder particle size distribution encourages localized plastic deformation and subsequent microstructural recrystallization of Type 316L stainless steel; the effect of powder particle size distribution on the rate of porosity consolidation is also discussed. Specifically, we have determined the temperature and pressure conditions that are required to initiate dynamic recrystallization during HIP, and explain how this is influenced by the powder particle size distribution.


2010 ◽  
Vol 10 (16) ◽  
pp. 8065-8076 ◽  
Author(s):  
S. Hosseini ◽  
Q. Li ◽  
D. Cocker ◽  
D. Weise ◽  
A. Miller ◽  
...  

Abstract. Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in well controlled repeatable lab scale biomass fires for southwestern United States fuels with focus on chaparral. The combustion laboratory at the United States Department of Agriculture-Forest Service's Fire Science Laboratory (USDA-FSL), Missoula, MT provided a repeatable combustion and dilution environment ideal for measurements. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing mass size distribution from FMPS and APS measurement 51–68% of particle mass was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most fuels produced a unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using the slopes in MCE (Modified Combustion Efficiency) vs. geometric mean diameter than only using MCE values.


2010 ◽  
Vol 10 (4) ◽  
pp. 8595-8621 ◽  
Author(s):  
S. Hosseini ◽  
L. Qi ◽  
D. Cocker ◽  
D. Weise ◽  
A. Miller ◽  
...  

Abstract. Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels. The combustion facility at the USDA Forest Service's Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which was attributable to dilution of the fresh smoke. Comparing volume size distribution from Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS) measurements, ~30% of particle volume was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in Modified Combustion Efficiency (MCE) vs. geometric mean diameter from each mode of combustion than only using MCE values.


2005 ◽  
Vol 498-499 ◽  
pp. 217-224
Author(s):  
Daniel Rodrigues ◽  
João Pedro Tosetti ◽  
Flávio Beneduce ◽  
Lucio Salgado ◽  
Francisco Ambrozio Filho

Austenitic stainless steel filters are mostly used when there is an aggressive environment condition, especially when good corrosion and mechanical resistance at relatively high temperature are required. These filters are usually obtained from non-spherical, mostly atomized powders by cold pressing and sintering. In order to achieve an adequate performance concerning permeability, powders with a narrow range of particle size should be used. However, besides particle size distribution, apparent density of the selected powder, which can be adjusted by the particle size, shape and distribution, affects the performance of the final product. Particle size distribution, particle shape and particle surface roughness control apparent density. This work presents some results on the evaluation of such effect.


2011 ◽  
Vol 194-196 ◽  
pp. 1007-1011
Author(s):  
Bao Lin Zhu ◽  
Xin Huang ◽  
Ye Guo

On the basis of the principle for the highest filling degree of cement hydrates, it is synthetically considered that a matching connection between hydration of cement, volume increment of solid phase and packing density of cement paste, a calculation method for a connection between cement continuous particle size distribution and strength of cement paste is developed and tested by experiment. Based on above-mentioned analysis, a tentative research on the effect of particle size distribution of cement on strength is carried out.


Sign in / Sign up

Export Citation Format

Share Document