scholarly journals Eulerian Description of Rail Straightening Process

2014 ◽  
Vol 624 ◽  
pp. 213-217 ◽  
Author(s):  
Tomas Návrat ◽  
Jindrich Petruška

The paper deals with numerical analysis of the process of roller straightening of rails. The problem of repeated elasto-plastic bending is solved by a program in MATLAB based on FEM algorithm with Eulerian description of material flow through the straightening machine. Beam element formulation with a shear deformation effect is used for the rail discretization. The results are compared with literature and standard FE analysis with Lagrangian description of material flow. Effectiveness of presented formulation is discussed and its applicability for fast iterative optimization of the straightening process is illustrated.

1973 ◽  
Vol 28 (12) ◽  
pp. 1967-1968 ◽  
Author(s):  
W. Helfrich

Permeation, i. e. material flow through cholesteric and smectic layers, may vary in speed for the components of a mixture. We derive qualitative formulas for the permeation rate of solute molecules in cholesterics as a function of their size. The possibility of a new kind of chromatography based on permeation in cholesterics or smectics is discussed.


Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.


Author(s):  
K. S. Al-Athel ◽  
M. S. Gadala

The adaptation of the volume of fluid method (VOF) to solid mechanics (VOS) is presented in this work with the focus on metal forming applications. The method is discussed for a general non-uniform mesh with Eulerian finite element formulation. The implementation of the VOS method in metal forming applications is presented by focusing on topics such as the contact between the tool and the workpiece, tracking of the free surface of the material flow and the connectivity of the free surface during the whole process. Improvement on the connectivity of the free surface and the representation of curves is achieved by considering the mechanics of different metal forming processes. Different applications are simulated and discussed to highlight the capability of the VOS method.


2007 ◽  
Vol 19 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Wei-zhe Wang ◽  
Ying-zheng Liu ◽  
Pu-ning Jiang ◽  
Han-ping Chen

1972 ◽  
Vol 51 (1) ◽  
pp. 97-118 ◽  
Author(s):  
O. M. Phillips

A theory is developed to describe the evolution of the entrainment interface in turbulent flow, in which the surface is convoluted by the large-scale eddies of the motion and at the same time advances relative to the fluid as a result of the micro-scale entrainment process. A pseudo-Lagrangian description of the process indicates that the interface is characterized by the appearance of ‘billows’ of negative curvature, over which surface area is, on average, being generated, separated by re-entrant wedges (lines of very large positive curvature) where surface area is consumed. An alternative Eulerian description allows calculation of the development of the interfacial configuration when the velocity field is prescribed. Several examples are considered in which the prescribed velocity field in the z direction is of the general form w = Wf(x – Ut), where the maximum value of the function f is unity. These indicate the importance of leading points on the surface which are such that small disturbances in the vicinity will move away from the point in all directions. The necessary and sufficient condition for the existence of one or more leading points on the surface is that U [les ] V, the speed of advance of an element of the surface relative to the fluid element at the same point. The existence of leading points is accompanied by the appearance of line discontinuities in the surface slope re-entrant wedges, In these circumstances, the overall speed of advance of the convoluted surface is found to be W + (V2 – U2)½, where W is the maximum outwards velocity in the region; this result is independent of the distribution f.When the speed U with which an ‘eddy’ moves relative to the outside fluid is greater than the speed of advance V of an element of the front, the interface develops neither leading points nor discontinuities in slope; the amplitude of the surface convolutions and the overall entrainment speed are both reduced greatly. In a turbulent flow, therefore, the large-scale motions influencing entrainment are primarily those that move slowly relative to the outside fluid (with relative speed less than V). The experimental results of Kovasznay, Kibens & Blackwelder (1970) are reviewed in the light of these conclusions. It appears that in their experiments the entrainment speed V is of the order fifteen times the Kolmogorov velocity, the large constant of proportionality being apparently the result of augmentation by micro-convolutions of the interface associated with small and meso-scale eddies of the turbulence.


Author(s):  
Wojciech Wolański ◽  
Bożena Gzik-Zroska ◽  
Kamil Joszko ◽  
Marek Gzik ◽  
Damian Sołtan

2018 ◽  
Vol 240 ◽  
pp. 03012
Author(s):  
Łukasz Semkło ◽  
Łukasz Gierz

Numerical analysis of parts of the installation for transporting the mixture. The mixture consists of sand, stones and water. The analysis concerns the possibility of reducing the flow velocity of the mixture in the installation by means of installing the blades. The article presents an analysis of 10 blades that have been simulated. Speed distributions are presented after passing through the blades and determined which slows the speed of the mixture to the best possible extent.


Sign in / Sign up

Export Citation Format

Share Document