Design and Analysis of Viscoelastic Seismic Dampers

Author(s):  
N. Shimizu ◽  
H. Nasuno ◽  
T. Yazaki ◽  
K. Sunakoda

This paper describes a methodology of design and analysis of viscoelastic seismic dampers by means of the time domain finite element analysis. The viscoelastic constitutive relation of material incorporating with the fractional calculus has been derived and the finite element formulation based on the constitutive relation has been developed to analyze the dynamic property of seismic damper. A time domain computer program was developed by using the formulation. Dynamic properties of hysteresis loop, damping capacity, equivalent viscous damping coefficient, and equivalent spring constant are calculated and compared with the experimental results. Remarkable correlation between the FE analysis and the experiment is gained, and consequently the design procedure with the help of the FE analysis has been established.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2437 ◽  
Author(s):  
Waheed AbuShanab ◽  
Essam Moustafa

The demand for nondestructive testing has increased, especially in welding testing. In the current study, AA1060 aluminum plates were jointed using the friction stir welding (FSW) process. The fabricated joints were subjected to free vibration impact testing in order to investigate the dynamic properties of the welded joint. Damping capacity and dynamic modulus were used in the new prediction method to detect FSW defects. The data acquired were processed and analyzed using a dynamic pulse analyzer lab shop and ME’Scope’s post-processing software, respectively. A finite element analysis using ANSYS software was conducted on different types of designed defects to predict the natural frequency. The results revealed that defective welded joints significantly affect the specific damping capacity. As the damping ratio increased, so did the indication of opportunities to increase the presence of defects. The finite element simulation model was consistent with experimental work. It was therefore revealed that natural frequency was insufficient to predict smaller defects.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2006 ◽  
Vol 03 (01) ◽  
pp. 115-135 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
JIAN-JUN ZHU ◽  
K. Y. SZE

An ad hoc one-dimensional finite element formulation is developed for the eigenanalysis of inplane singular electroelastic fields at material and geometric discontinuities in piezoelectric elastic materials by using the eigenfunction expansion procedure and the weak form of the governing equations for prismatic sectorial domains composed of piezoelectrics, composites or air. The order of the electroelastic singularities and the angular variation of the stress and electric displacement fields are obtained with the formulation. The influence of wedge angle, polarization orientation, material types, and boundary and interface conditions on the singular electroelastic fields and the order of their singularity are also examined. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical solutions for piezoelectric and composite multi-material wedges. The nature and speed of convergence suggests that the present eigensolution could be used in developing hybrid elements for use along with standard elements to yield accurate and computationally efficient solutions to problems having complex global geometries leading to singular electroelastic states.


2021 ◽  
Vol 71 (1) ◽  
pp. 58-64
Author(s):  
Raviduth Ramful

Abstract Full-culm bamboo has been used for millennia in construction. Specific connections are normally required to suit its unique morphology and nonuniform structure. Presently, the use of full-culm bamboo is limited in the construction industry as a result of a lack of information and test standards about the use and evaluation of full-culm connections. This study aims to further explore this area by investigating the failure modes in bamboo bolt connections in uniaxial tension by considering fiber direction in finite element analysis. Three types of bolt configurations of varying permutations, namely, single, dual, and orthogonal, were investigated. An orthotropic material was used as a constitutive model in finite element formulation to capture the inhomogeneity prevailing in bamboo culm. From the strain-field analysis of a hollow-inhomogeneous model representing bamboo, shear-out failure was dominant, as a localized area equivalent to the bolt diameter was affected due to high material orthotropy with high axial strength but weak radial and tangential strength. Bearing failure is assumed to precede shear-out failure at the bolt–bamboo contact interface, as the embedding strength was affected by localized strain concentration. The strain distribution in various bolt arrangements was found to vary between bolted connections of inhomogeneous-hollow geometry of bamboo and the ones of inhomogeneous-solid geometry representing timber. The observation in this study highlights the need for alternative design criteria to specifically assess the damage mechanism in bamboo connections.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Chen Xia ◽  
Chengzhi Qi ◽  
Xiaozhao Li

Transmitting boundaries are important for modeling the wave propagation in the finite element analysis of dynamic foundation problems. In this study, viscoelastic boundaries for multiple seismic waves or excitations sources were derived for two-dimensional and three-dimensional conditions in the time domain, which were proved to be solid by finite element models. Then, the method for equivalent forces’ input of seismic waves was also described when the proposed artificial boundaries were applied. Comparisons between numerical calculations and analytical results validate this seismic excitation input method. The seismic response of subway station under different seismic loads input methods indicates that asymmetric input seismic loads would cause different deformations from the symmetric input seismic loads, and whether it would increase or decrease the seismic response depends on the parameters of the specific structure and surrounding soil.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2007 ◽  
Vol 353-358 ◽  
pp. 2855-2859
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
J.B. Na ◽  
D.H. Lee ◽  
S.Y. Cho ◽  
...  

Since most marine engines are generally very huge and heavy, it is required to keep safety from accidents in dealing them. Several types of lifting lugs have been used to assemble hundred ton–large steel structures and carry the assembled engines. Recently a few crashes have been occurred in carrying engines due to breaking down the lugs. Although the stability evaluation of the lifting lug has therefore been very important for safety, systematic design procedure of the lugs, which includes the structural analysis considering stability, has few reported. This paper describes the three dimensional finite element structural modeling for a lifting lug, the studies for determining the reasonable loading and boundary conditions, and the stability evaluation with the results of structural analyses. It should be very helpful for designing the other types of lifting lugs with safety.


Sign in / Sign up

Export Citation Format

Share Document