Flocking with Fault Tolerant Control and Obstacles Avoidance for Mobile Robots Based on Grid Maps

2014 ◽  
Vol 631-632 ◽  
pp. 669-675
Author(s):  
Yong Xiong ◽  
Ji Liang Lin

Taking α-lattice flocking as research object, the influence when faults occur in flock and its fault tolerance control algorithm is studied. The impact on flocking performance is analyzed by means of flocking property indexes when communication error, actuator failure or sensor malfunction occur. A flocking fault diagnosis method and fault tolerance control strategy based on communication and data association are introduced. Considering failure mobile robots as obstacles, a complex shaped obstacles avoidance algorithm is proposed. Simulation shows the effectiveness of the method.

2014 ◽  
Vol 511-512 ◽  
pp. 1012-1016 ◽  
Author(s):  
Zhi Qiang Wang ◽  
Xiao Long Li ◽  
Qing Zhen Wang

For the failure of current sensor on maglev train, an active fault tolerance control strategy based on feedback gain reconfiguration is proposed. Fault diagnosis unit based on state observer is designed to detect the output of current sensor, the diagnosis result is used to switch the control strategy. Simulation result indicates that the fault tolerance strategy meets the demands of the system.


2018 ◽  
Vol 8 (3) ◽  
pp. 20-31 ◽  
Author(s):  
Sam Goundar ◽  
Akashdeep Bhardwaj

With mission critical web applications and resources being hosted on cloud environments, and cloud services growing fast, the need for having greater level of service assurance regarding fault tolerance for availability and reliability has increased. The high priority now is ensuring a fault tolerant environment that can keep the systems up and running. To minimize the impact of downtime or accessibility failure due to systems, network devices or hardware, the expectations are that such failures need to be anticipated and handled proactively in fast, intelligent way. This article discusses the fault tolerance system for cloud computing environments, analyzes whether this is effective for Cloud environments.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 876 ◽  
Author(s):  
Qinyue Zhu ◽  
Wei Dai ◽  
Lei Guan ◽  
Xitang Tan ◽  
Zhaoyang Li ◽  
...  

In view of the complex calculation and limited fault tolerance capability of existing neutral point shift control algorithms, this paper studies the fault-tolerant control method for sub-module faults in modular multilevel converters on the basis of neutral point compound shift control strategy. In order to reduce the calculation complexity of shift parameters in the traditional strategy and simplify its implementation, an improved AC side phase voltage vector reconstruction method is proposed, achieving online real-time calculation of the modulation wave adjustment parameters of each phase required for fault-tolerant control. Based on this, a neutral point DC side shift control method is proposed to further improve the fault tolerance capability of the modular multilevel converter (MMC) system by compensating the fault phase voltage with non-fault phase voltage. By means of the compound shift control strategy of the DC side and AC side of the neutral point, an optimal neutral point position is selected to ensure that the MMC system output line voltage is symmetrical and the amplitude is as large as possible after fault-tolerant control. Finally, the effectiveness and feasibility of the proposed control strategy are verified by simulation and low-power MMC experimental system testing.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 584
Author(s):  
Shuting Wan ◽  
Bo Peng

Early fault information of rolling bearings is weak and often submerged by background noise, easily leading to misdiagnosis or missed diagnosis. In order to solve this issue, the present paper puts forward a fault diagnosis method on the basis of adaptive frequency window (AFW) and sparse coding shrinkage (SCS). The proposed method is based on the idea of determining the resonance frequency band, extracting the narrowband signal, and envelope demodulating the extracted signal. Firstly, the paper introduces frequency window, which can slip on the frequency axis and extract the frequency band. Secondly, the double time domain feature entropy is proposed to evaluate the strength of periodic components in signal. The location of the optimal frequency window covering the resonance band caused by bearing fault is determined adaptively by this entropy index and the shifting/expanding frequency window. Thirdly, the signal corresponding to the optimal frequency window is reconstructed, and it is further filtered by the sparse coding shrinkage algorithm to highlight the impact feature and reduce the residue noise. Fourthly, the de-noised signal is demodulated by envelope operation, and the corresponding envelope spectrum is calculated. Finally, the bearing failure type can be judged by comparing the frequency corresponding to the spectral lines with larger amplitude in the envelope spectrum and the fault characteristic frequency. Two bearing vibration signals are applied to validate the proposed method. The analysis results illustrate that this method can extract more failure information and highlight the early failure feature. The data files of Case Western Reserve University for different operation conditions are used, and the proposed approach achieves a diagnostic success rate of 83.3%, superior to that of the AFW method, SCS method, and Fast Kurtogram method. The method presented in this paper can be used as a supplement to the early fault diagnosis method of rolling bearings.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yu Lu ◽  
Pengpeng Ye ◽  
Ming-Zhe Dai ◽  
Jin Wu ◽  
Chengxi Zhang

Purpose This paper aims to address the spacecraft attitude regulation problem in the presence of extrinsic disturbances and actuator faults. Design/methodology/approach Based on adaptive backstepping design technique, a new concise adaptive dual-mode control scheme is proposed, which can either use the fault information detected by fault diagnosis mechanisms or switch to the fault-unknown mode when the fault diagnosis information is non-existent for control signal generation. These two modes share an adaptive mechanism that reduces the complexity of the algorithm. Findings The new fault-tolerant attitude control algorithm can accommodate both modes with and without fault diagnosis mechanisms. Originality/value The proposed algorithm in this paper can be applied to both cases when the attitude control system is equipped with or without fault diagnosis capability. This also enhances the robustness of attitude control algorithm. This study performs numerical simulations and verifies that the algorithm could effectively adapt to both modes.


2013 ◽  
Vol 760-762 ◽  
pp. 1062-1066 ◽  
Author(s):  
Xiang Gao ◽  
Tao Zhang ◽  
Hong Jin Liu ◽  
Jian Gong

In this paper, a fault diagnosis method for spacecraft based on telemetry data mining and fault tree analysis was proposed. Decision trees are constructed from the history telemetry data of the spacecraft, and are used to classify the current data which is unknown whether it is fault. If there is a fault, the fault tree method will be used to analyze the fault reason and the impact on the spacecraft system. This method can effectively solve the problem of diagnostic knowledge acquisition. We design and construct a fault diagnosis expert system for spacecraft based on this diagnosis method. An experiment is presented to prove the effectiveness and practicality of the expert system.


Sign in / Sign up

Export Citation Format

Share Document