Optimization Design and Modal Analysis of Satellite SAR Deployable Support Structure

2014 ◽  
Vol 635-637 ◽  
pp. 185-189 ◽  
Author(s):  
Yan Wang ◽  
Rong Qiang Liu ◽  
Hui Yang ◽  
Bin Wang

The design flow of deployable support structures is proposed based on modal analysis, and the finite element model for DST of satellite SAR is researched. On these bases, the affecting factors of DST attitude fundamental frequency (f1) and mass, such as geometry parameters, the lock position, stiffness of hinges and thickness of truss links, are analyzed and optimized. Lastly, considering of space thermal environment the optimal design of the DST is meted the requirements under different thermal fields. The research results are of great importance to improve the performances of DST.

2013 ◽  
Vol 345 ◽  
pp. 429-433
Author(s):  
Rui Tian

The use of 3D design software Inventor, established the mechanical structure and the finite element model of laser anti-counterfeit platform focusing mechanism in production manufacturing engineering. Through doing the modal analysis and static analysis of the mechanism, we found the natural frequency and Vibration modes of the structure of focusing mechanism, and proved the mechanism design was reliable and stable to avoid the failure of focusing caused by mechanical resonance and which provided the basis for further optimization design for production manufacturing engineering.


2015 ◽  
Vol 740 ◽  
pp. 112-115
Author(s):  
Qing Wei Shi ◽  
Ya Yun Liu ◽  
Xing Lu Liu ◽  
Xue Di Hao

Aiming at the problem of intense vibration of the long pipeline delivering coal slime in the power plant, the finite element model of pipeline is established and modal analysis is carried out by ANSYS. The natural frequency and vibration characteristics of axial vibration are obtained. The vibration characteristics are studied and different pipe segments that produce bigger vibration very easily in operation are determined. Theoretical guidance about pipeline vibration under the external load for further analysis is provided.


2014 ◽  
Vol 900 ◽  
pp. 742-745 ◽  
Author(s):  
Yao Jie He ◽  
Bai Jing Qiu ◽  
Ya Fei Yang

In order to attenuate the deformation of spray boom, a finite element model built based on ANSYS, according to the reasults of numerical modal analysis and modal texting, the reliability of the finite element model was affirmed. Then, an isolator was introduced between spray boom and frame, a frame-isolator-spray boom model was built in ADAMS. The effect of the isolators which have different parameters was research, the reasult shows: The isolator has much effect on attenuating spray booms deformation, the stiffness of isolators spring dampers has little effect on spray booms deformation, but the damping of isolators spring dampers has effect on spray booms deformation.


2012 ◽  
Vol 184-185 ◽  
pp. 356-359
Author(s):  
Jiang Miao Yi ◽  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Huan Lin

The finite element model of worktable system is created and modal analysis is made with ANSYS Workbench by taking DVG850 high-speed vertical machining center worktable system for example. We make modal analysis of single-screw strength general reinforcement worktable system and get the natural frequency and the vibration mode.Then in order to improve the system's natural frequency, the scheme of dual-screw worktable system is put forward. Also natural frequency and vibration mode is got. Finally, it is proved that the performance of dual-screw worktable system is significantly better than the single-screw one. This provides a reliable reference for further study on dynamic analysis of worktable system.


2014 ◽  
Vol 577 ◽  
pp. 310-313
Author(s):  
Ping Yang ◽  
Zhou De Qu ◽  
Min Li

Based on the impact of some horizontal filtering tank’s instability in operation process on production, the present paper discusses the optimal design scheme for horizontal filtering tank structure with the help of finite element. Theoretical guidance will be given to enterprise from the perspective of finite element for the purpose of improving the horizontal filtering tank through constructing the finite element model for horizontal filtering tank with Creo parametric software, conducting simulation with workbench software[1] and finally arriving at the reasonable design scheme after analysis, thus avoiding the structural instability caused by the over-constraint of structural leg support beam and filter plate under-constraint.


2014 ◽  
Vol 496-500 ◽  
pp. 601-604
Author(s):  
Jing Wang ◽  
Yong Wang ◽  
Ying Hua Liao

In this paper, the modal of motorcycle frame is analyzed by using the analytic method and experimental method. The results show that the dynamic properties of the finite element model are in good agreement with the experiment and the finite element model was reliable and accurate.


2011 ◽  
Vol 317-319 ◽  
pp. 2373-2377
Author(s):  
Guo Juan Shang ◽  
Gen Li Shan ◽  
Xi Juan Qi

Based on sufficient market research, a new model of self-unloading semi-trailer, whose maximum loading capacity is 30 tons, has been designed. The paper describes its overall structure, the three-dimensional diorama model and the finite element model of the frame. Based on the analysis of the models and the results of the calculation, the parameters of the frame are optimized. The advantages of the new design are as follows: the new design makes the most of the advantages of self-unloading trailers and semi-trailers, that is, self-unloading, security, stability, high efficiency, environmental protection.


2014 ◽  
Vol 960-961 ◽  
pp. 1420-1423
Author(s):  
Zhi Dong Huang ◽  
Guo Fei Li ◽  
Juan Cong ◽  
Yun Wang ◽  
Wei Na Yu ◽  
...  

Based on Solidworks software, the three-dimensional model of two wheels scooter is set up. The finite element model of two wheels scooter is generated. Modal analysis of driving system and telescopic mechanism of bar on two wheels scooter is investigated. The first five orders natural frequency and major modes of driving system and telescopic mechanism of bar are clarified. The method and the result can be used as a reference of dynamic design and lay foundation for calculation and analysis of dynamic response for the two wheels scooter.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


2011 ◽  
Vol 411 ◽  
pp. 54-58
Author(s):  
Tao Feng ◽  
Xiao Li Jin

Based on the analytical theories of the joint surface, finite element modeling method of two kinds of joint about rails and bolts were studied. The finite element model of the engraving machine is built and its static and dynamic characterization is analyzed by the universal ANSYS. By this way, unreasonable structural design of engraving machine can be conducted, which will provide support for the optimization design of the structure. The correctness of the modeling method of joint surface is confirmed.


Sign in / Sign up

Export Citation Format

Share Document