Application of WAVELET-SVM in Fault Diagnosis for the UV Control System

2011 ◽  
Vol 65 ◽  
pp. 199-203
Author(s):  
Sheng Wu Wang ◽  
Xiu Hua Shi ◽  
Hui Xu ◽  
Zhao Jing Tong

Wavelet Analysis extracts the main feature from the fault signal through wavelet transformation, so it is advantageous to withdraw fault characteristic for fault diagnosis. Support Vector Machine (SVM) has shown its good classification performance in fault diagnosis. A new method of fault diagnosis for UV control system based on WAVELET-SVM is raised. The sensor output is sampled in frequency domain and it is preprocessed by wavelet to extract main vectors of the fault features. Fault patterns under various states are classified using multi-class SVM, and fault diagnosis is realized. The simulation results show that WAVELET-SVM is feasible to detect and locate faults quickly and exactly and has high robustness.

2013 ◽  
Vol 22 (01) ◽  
pp. 1250038 ◽  
Author(s):  
PEERAPON VATEEKUL ◽  
SAREEWAN DENDAMRONGVIT ◽  
MIROSLAV KUBAT

In “multi-label domains,” where the same example can simultaneously belong to two or more classes, it is customary to induce a separate binary classifier for each class, and then use them all in parallel. As a result, some of these classifiers are induced from imbalanced training sets where one class outnumbers the other – a circumstance known to hurt some machine learning paradigms. In the case of Support Vector Machines (SVM), this suboptimal behavior is explained by the fact that SVM seeks to minimize error rate, a criterion that is in domains of this type misleading. This is why several research groups have studied mechanisms to readjust the bias of SVM's hyperplane. The best of these achieves very good classification performance at the price of impractically high computational costs. We propose here an improvement where these cost are reduced to a small fraction without significantly impairing classification.


Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 195 ◽  
Author(s):  
Dickson Keddy Wornyo ◽  
Xiang-Jun Shen

The least squares support vector method is a popular data-driven modeling method which shows better performance and has been successfully applied in a wide range of applications. In this paper, we propose a novel coupled least squares support vector ensemble machine (C-LSSVEM). The proposed coupling ensemble helps improve robustness and produce good classification performance than the single model approach. The proposed C-LSSVEM can choose appropriate kernel types and their parameters in a good coupling strategy with a set of classifiers being trained simultaneously. The proposed method can further minimize the total loss of ensembles in kernel space. Thus, we form an ensemble regressor by co-optimizing and weighing base regressors. Experiments conducted on several datasets such as artificial datasets, UCI classification datasets, UCI regression datasets, handwritten digits datasets and NWPU-RESISC45 datasets, indicate that C-LSSVEM performs better in achieving the minimal regression loss and the best classification accuracy relative to selected state-of-the-art regression and classification techniques.


2013 ◽  
Vol 422 ◽  
pp. 83-88
Author(s):  
Chao Lin Huang

Aiming at the fault diagnosis problem, the transformers fault diagnosis method is proposed based on improved support vector machine. The optimum parameters setting are got by the particle swarm optimization. The experimental results demonstrate that the proposed method of this paper has the good classification performance, the high reliability, effective and feasible. Keywords: support vector machine, fault diagnosis, particle swarm, classification


2019 ◽  
Vol 13 ◽  
Author(s):  
Yan Zhang ◽  
Ren Sheng

Background: In order to improve the efficiency of fault treatment of mining motor, the method of model construction is used to construct the type of kernel function based on the principle of vector machine classification and the optimization method of parameters. Methodology: One-to-many algorithm is used to establish two kinds of support vector machine models for fault diagnosis of motor rotor of crusher. One of them is to obtain the optimal parameters C and g based on the input samples of the instantaneous power fault characteristic data of some motor rotors which have not been processed by rough sets. Patents on machine learning have also shows their practical usefulness in the selction of the feature for fault detection. Results: The results show that the instantaneous power fault feature extracted from the rotor of the crusher motor is obtained by the cross validation method of grid search k-weights (where k is 3) and the final data of the applied Gauss radial basis penalty parameter C and the nuclear parameter g are obtained. Conclusion: The model established by the optimal parameters is used to classify and diagnose the sample of instantaneous power fault characteristic measurement of motor rotor. Therefore, the classification accuracy of the sample data processed by rough set is higher.


2008 ◽  
Vol 07 (01) ◽  
pp. 151-155 ◽  
Author(s):  
AKIRA INOUE ◽  
MINGCONG DENG

A fault detection problem in a process control experimental system with unknown factors is presented in this paper. The fault detecting method is based on blind system identification approach. The experimental system actuator output includes unknown dynamics and unknown fault signal. By using the fault detecting method, the fault signal is detected. Simulation results for the experimental process are presented to show the effectiveness.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 145 ◽  
Author(s):  
Viet Tra ◽  
Bach-Phi Duong ◽  
Jae-Young Kim ◽  
Muhammad Sohaib ◽  
Jong-Myon Kim

This paper proposes a reliable fault diagnosis model for a spherical storage tank. The proposed method first used a blind source separation (BSS) technique to de-noise the input signals so that the signals acquired from a spherical tank under two types of conditions (i.e., normal and crack conditions) were easily distinguishable. BSS split the signals into different sources that provided information about the noise and useful components of the signals. Therefore, an unimpaired signal could be restored from the useful components. From the de-noised signals, wavelet-based fault features, i.e., the relative energy (REWPN) and entropy (EWPN) of a wavelet packet node, were extracted. Finally, these features were used to train one-against-all multiclass support vector machines (OAA MCSVMs), which classified the instances of normal and faulty states of the tank. The efficiency of the proposed fault diagnosis model was examined by visualizing the de-noised signals obtained from the BSS method and its classification performance. The proposed fault diagnostic model was also compared to existing techniques. Experimental results showed that the proposed method outperformed conventional techniques, yielding average classification accuracies of 97.25% and 98.48% for the two datasets used in this study.


2019 ◽  
Vol 14 (4) ◽  
pp. 487-492
Author(s):  
Zhiyi Wang ◽  
Jiachen Zhong ◽  
Jingfan Li ◽  
Cui Xia

Abstract To overcome the drawbacks of using supervised learning to extract fault features for classification and low nonlinearity of the features in most of current fault diagnosis of air-conditioning refrigeration system, sparse autoencoder (SAE) is presented to extract fault features that are used as the input to the classifier and to achieve fault diagnosis for air-conditioning refrigeration system. The SAE structure is tuned by adjusting the number of hidden layers and nodes to build the optimal model, which is compared with the fault diagnosis model based on support vector machine. Results indicate that the indexes of the model combined with SAE, such as accuracy, precision and recall, are all improved, especially for the faults with high complexity. Besides, SAE shows high generalization ability with small-scale sample data and high efficiency with large-scale data. Obviously, the use of SAE can effectively optimize the diagnosis performance of the classifier.


2005 ◽  
Vol 127 (3) ◽  
pp. 294-303 ◽  
Author(s):  
Piervincenzo Rizzo ◽  
Ivan Bartoli ◽  
Alessandro Marzani ◽  
Francesco Lanza di Scalea

This paper casts pipe inspection by ultrasonic guided waves in a feature extraction and automatic classification framework. The specific defect under investigation is a small notch cut in an ASTM-A53-F steel pipe at depths ranging from 1% to 17% of the pipe cross-sectional area. A semi-analytical finite element method is first used to model wave propagation in the pipe. In the experiment, reflection measurements are taken and six features are extracted from the discrete wavelet decomposition of the raw signals and from the Hilbert and Fourier transforms of the reconstructed signals. A six-dimensional damage index is then constructed, and it is fed to an artificial neural network that classifies the size and the location of the notch. Overall, the wavelet-based multifeature analysis demonstrates good classification performance and robustness against noise and changes in some of the operating parameters.


2014 ◽  
Vol 666 ◽  
pp. 203-207
Author(s):  
Jian Hua Cao

This paper is to present a fault diagnosis method for electrical control system of automobile based on support vector machine. We collect the common fault states of electrical control system of automobile to analyze the fault diagnosis ability of electrical control system of automobile based on support vector machine. It can be seen that the accuracy of fault diagnosis for electrical control system of automobile by support vector machine is 92.31%; and the accuracy of fault diagnosis for electrical control system of automobile by BP neural network is 80.77%. The experimental results show that the accuracy of fault diagnosis for electrical control system of automobile of support vector machine is higher than that of BP neural network.


2011 ◽  
Vol 121-126 ◽  
pp. 268-272 ◽  
Author(s):  
Ke Li ◽  
Yue Lei Zhang ◽  
Zhi Xiong Li

In the condition monitoring and fault diagnosis, useful information about the incipient fault features in the measured signal is always corrupted by noise. Fortunately, the Kalman filtering technique can filter the noise effectively, and the impending system fault can be revealed to prevent the system from malfunction. This paper has discussed recent progress of the Kalman filters for the condition monitoring and fault diagnosis. A case study on the rolling bearing condition monitoring and fault diagnosis using Kalman filter and support vector machine (SVM) has been presented. The analysis result showed that the integration of the Kalman filter and SVM was feasible and reliable for the rolling bearing condition monitoring and fault diagnosis and the fault detection rate was over 96.5%.


Sign in / Sign up

Export Citation Format

Share Document