Analysis of the Planar Magnetic Field of Linear Permanent Magnet Halbach Array

2011 ◽  
Vol 66-68 ◽  
pp. 1336-1341
Author(s):  
Xiao Zhang ◽  
Yun Gang Li ◽  
Hu Cheng ◽  
Heng Kun Liu

In this paper, the analytical solution to the planar magnetic field of a linear permanent magnet Halbach array is researched on. First, the magnetic field of a current surface is derived from the magnetic field produced by the molecular current of the permanent magnet. The magnetic fields of pieces of permanent magnet with vertical and diagonal magnetization direction are both solved by combining the magnetic field of current surfaces with different directions. Then the planar magnetic field of the entire linear permanent magnet Halbach array is obtained by calculating the vector addition of the magnetic field of all the permanent magnet cubes using Denavit-Hartenberg (D-H) transform technique, which yields the closed-form analytical expressions. The analytical algorithm proposed in this paper can be utilized to design and optimize the Halbach array, which in result can greatly simplify the calculation and expedite the progress. The effectiveness of the proposed method is evaluated by the finite element analysis software Maxwell.

2012 ◽  
Vol 229-231 ◽  
pp. 440-443
Author(s):  
Yin Chen ◽  
Kun Lun Zhang

This paper researches on the levitation and drag forces of Halbach permanent-magnet electrodynamic suspension. First, construct an analytical model to calculate the magnetic field in the air gap and the current in the secondary conductor plate, thus deducing analytical expressions of the levitation and drag forces. Second, establish a 2D and a 3D finite element model, using ANSYS. Finally, at different speeds, from 0 to 250 km/h, compare the forces calculating results through the above three methods. Results generating from the 2D-FEM and the analytical algorithm have less than 3% of relative error, but for having not taken the horizontal components of eddy current in the reaction plate into consideration, thus 10% more than the 3D-FEM calculating results.


2011 ◽  
Vol 52-54 ◽  
pp. 285-290
Author(s):  
Yi Chang Wu ◽  
Feng Ming Ou ◽  
Bo Wei Lin

The prediction of the magnetic field is a prerequisite to investigate the motor performance. This paper focuses on the magnetic field estimation of surface-mounted permanent-magnet (SMPM) motors based on two approximations, i.e., the magnetic circuit analysis and the finite-element analysis (FEA). An equivalent magnetic circuit model is applied to analytically evaluate the magnetic field of a SMPM motor with exterior-rotor configuration. The two-dimensional FEA is then applied to numerically calculate the magnetic field and to verify the validity of the magnetic circuit model. The results show that the errors between the analytical predictions and FEA results are less than 6%. It is of benefit to further design purposes and optimization of SMPM motors.


2014 ◽  
Vol 596 ◽  
pp. 67-71
Author(s):  
Xiu Quan Liu ◽  
Yan Hong Li

the magnetic dipole model of the cylindrical permanent magnet was introduced. Then, based on Ansoft software, the simulation model of the cylindrical permanent magnet was established, and the influence of some parameters, such as the height, radius and magnetization direction on the magnetic induction intensity ,were studied; at the same time, under these two models the calculation was compared, the result shows the the magnetic dipole model is applied on condition that distance is nine times greater than the cylindrical permanent magnet size.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1055 ◽  
Author(s):  
Juanjuan Zhang ◽  
Yan Kang ◽  
Yuanwen Gao ◽  
George Weng

In this paper, the magnetoelectric (ME) effect is investigated in two kinds of A-line shape Terfenol-D/PZT-5A structures by changing the position of the NdFeB permanent magnet. The experimental results show that both ME composite structures had multiple resonance peaks. For the ME structure with acrylonitrile-butadiene-styrene (ABS) trestles, the resonance peak was different for different places of the NdFeB permanent magnet. Besides, the maximum of the ME coefficient was 4.142 V/A at 32.2 kHz when the NdFeB permanent magnet was on top of the Terfenol-D layer. Compared with the ME coefficient with a DC magnetic field, the ME coefficient with NdFeB magnets still maintained high values in the frequency domain of 65~87 kHz in the ME structure with mica trestles. Through Fourier transform analysis of the transient signal, it is found that the phenomenon of multiple frequencies appeared at low field frequency but not at high field frequency. Moreover, the output ME voltages under different AC magnetic fields are shown. Changing the amplitude of AC magnetic field, the magnitude of the output voltage changed, but the resonant frequency did not change. Finally, a finite element analysis was performed to evaluate the resonant frequency and the magnetic flux distribution characteristics of the ME structure. The simulation results show that the magnetic field distribution on the surface of Terfenol-D is non-uniform due to the uneven distribution of the magnetic field around NdFeB. The resonant frequencies of ME structures can be changed by changing the location of the external permanent magnet. This study may provide a useful basis for the improvement of the ME coefficient and for the optimal design of ME devices.


2014 ◽  
Vol 63 (4) ◽  
pp. 683-692 ◽  
Author(s):  
Xiping Liu ◽  
Dong Chen ◽  
Liang Yi ◽  
Chao Zhang ◽  
Min Wang

Abstract Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.


2007 ◽  
Vol 339 ◽  
pp. 50-58 ◽  
Author(s):  
Bao Ji Ma ◽  
Zhi Jian Fan ◽  
D.J. Stephenson

Based on the concept of the interaction between a magnetic and electric field, a magnetic field was suppressed on the Electrochemical Machining (ECM) setup to improve the copying accuracy of ECM. Mathematical modeling and finite element modeling of the magnetic field was also developed using ANSYS to study the influence of permanent magnet design on the ECM process. The results indicate that by introducing the magnetic field the threshold of electrochemical reaction is decreased and the tracks of ions become complicated which makes the chemical reaction more extensive and more uniform in the inter-electrode gap. The distribution of magnetic field in the gap helps to improve the machining accuracy and the process efficiency, when the permanent magnet is at the end of the electrodes. Experiments have been carried out to validate the results of finite element analysis and the effect of a magnetic field on the ECM process is discussed.


Author(s):  
Heshan Zhang ◽  
YanPeng Wang ◽  
Jiying Tuo ◽  
Minglei Yang ◽  
Ying Ma ◽  
...  

Purpose This study aims to accurately calculate the magnetic field distribution, which is a prerequisite for pre-design and optimization of electromagnetic performance. Accurate calculation of magnetic field distribution is a prerequisite for pre-design and optimization. Design/methodology/approach This paper proposes an analytical model of permanent magnet machines with segmented Halbach array (SHA-PMMs) to predict the magnetic field distribution and electromagnetic performance. The field problem is divided into four subdomains, i.e. permanent magnet, air-gap, stator slot and slot opening. The Poisson’s equation or Laplace’s equation of magnetic vector potential for each subdomain is solved. The field’s solution is obtained by applying the boundary conditions. The electromagnetic performances, such as magnetic flux density, unbalanced magnetic force, cogging torque and electromagnetic torque, are analytically predicted. Then, the influence of design parameters on the torque is explored by using the analytical model. Findings The finite element analysis and prototype experiments verify the analytical model’s accuracy. Adjusting the design parameters, e.g. segments per pole and air-gap length, can effectively increase the electromagnetic torque and simultaneously reduce the torque ripple. Originality/value The main contribution of this paper is to develop an accurate magnetic field analytical model of the SHA-PMMs. It can precisely describe complex topology, e.g. arbitrary segmented Halbach array and semi-closed slots, etc., and can quickly predict the magnetic field distribution and electromagnetic performance simultaneously.


Sign in / Sign up

Export Citation Format

Share Document