Experimental Study on Pressure Fluctuations in the Shock/boundary Layer Interaction of an Axisymmetric Body

2011 ◽  
Vol 66-68 ◽  
pp. 1483-1487
Author(s):  
Hong Xiao ◽  
Chao Gao ◽  
Zhen Kun Ma

The characteristics of the fluctuating pressure for the 15° expansion corner of an axisymmetric body have been investigated experimentally using dynamic pressure measurements and Schlieren photograghs. Data were acquired over a Mach number ranging from 0.8 to 0.92. The angles of attack ranged from 0° to 5°. Pressure signals were measured simultaneously in several positions along the axis of model and were analyzed both in the time and frequency domains. The results indicate that large fluctuating pressure loads, resulting from the shock/boundary layer interaction exist at the transonic flow condition, because of the shock/boundary layer interaction. The maximal pressure fluctuation occurs after the expansion corner at Mach number 0.86. With the Mach number increasing, the position of the normal shock moves downstream. In the shock/boundary layer interaction region, the fluctuating pressure changes significantly with different angles of attack. Moreover, this interaction has a main effect of enhancing the power spectral density in low-frequency range (f≤5KHz).

2011 ◽  
Vol 66-68 ◽  
pp. 1488-1493
Author(s):  
Hong Xiao ◽  
Chao Gao ◽  
Zhen Kun Ma

The characteristics of the fluctuating pressure in the boundary layer of an axisymmetric body have been investigated experimentally using dynamic pressure measurements and Schlieren photograghs. Data were acquired at subsonic and super-sonic Mach numbers. The angles of attack ranged from 0° to 5°. Pressure signals were measured simultaneously in several positions along the model and were analyzed both in the time and frequency domains. The Mach number shows the relevant influence on . Furthermore, the pressure fluctuations’ level decreases with the increasing of Mach number except M=1.15. And it is shown that, the location along the axis of the model and the angles of attack have small effect on pressure fluctuations.


2004 ◽  
Vol 126 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and Computational Fluid Dynamics (CFD). This report presents the measured results of the high transonic flow at the impeller inlet using Laser Doppler Velocimeter (LDV) and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution, and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460 m/s and the relative Mach number reaches about 1.6. Using a LDV, about 500 m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and CFD. This report presents the measured results of the high transonic flow at the impeller inlet using LDV and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460m/s and the relative Mach number reaches about 1.6. Using an LDV, about 500m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


Author(s):  
Mizuho Aotsuka ◽  
Toshinori Watanabe ◽  
Yasuo Machina

The unsteady aerodynamic characteristics of an oscillating compressor cascade composed of Double-Circular-Arc airfoil blades were both experimentally and numerically studied under transonic flow conditions. The study aimed at clarifying the role of shock waves and boundary layer separation due to the shock boundary layer interaction on the vibration characteristics of the blades. The measurement of the unsteady aerodynamic moment on the blades was conducted in a transonic linear cascade tunnel using an influence coefficient method. The cascade was composed of seven DCA blades, the central one of which was an oscillating blade in a pitching mode. The unsteady moment was measured on the central blade as well as the two neighboring blades. The behavior of the shock waves was visualized through a schlieren technique. A quasi-three dimensional Navier-Stokes code was developed for the present numerical simulation of the unsteady flow fields around the oscillating blades. A k-ε turbulence model was utilized to adequately simulate the flow separation phenomena caused by the shock-boundary layer interaction. The experimental and numerical results complemented each other and enabled a detailed understanding of the unsteady aerodynamic behavior of the cascade. It was found that the surface pressure fluctuations induced by the shock oscillation were the governing factor for the unsteady aerodynamic moment acting on the blades. Such pressure fluctuations were primarily induced by the movement of impingement point of the shock on the blade surface. During the shock oscillation the separated region caused by the shock boundary layer interaction also oscillated along the blade surface, and induced additional pressure fluctuations. The shock oscillation and the movement of the separated region were found to play the principal role in the unsteady aerodynamic and vibration characteristics of the transonic compressor cascade.


Author(s):  
He Zhongwei ◽  
Zhang Shiying

It is found in the experiments that blowing at the lip separation of the inlet obviously reduces the turbulences at the inlet exit, and apparently reduces the intensity of pressure fluctuations caused by the shock-boundary layer interaction down-stream of throat. The coherence between pressure in the interaction region and total pressure at the exit is also reduced. The coherence between the pressure in the lip separation region and total pressure at the exit is 0.32. If, in addition, there is a stronger shock down-stream of the throat the above mentioned coherence is reduced to 0.06.


Author(s):  
Ralf M. Bell ◽  
Leonhard Fottner

Experimental investigations of the shock/boundary-layer interaction were carried out in a highly loaded compressor cascade under realistic turbomachinery conditions in order to improve the accuracy of semi-empirical flow and loss prediction methods. Different shock positions and strengths were obtained by variations of inlet flow angle and inlet Mach number. The free stream turbulence intensity, depending on the inlet Mach number, changed between 4% and 8%. The influence of the inlet Reynolds number based on blade chord is also examined for two different values (Re1=450000, 900000). Schlieren pictures of the transonic cascade flow reveal an unsteady flow behavior with different shock configurations, depending on the pre-shock Mach number. Wake distributions and boundary-layer measurements with the Laser two-focus velocimetry show that the increase of total pressure loss with increasing inlet Mach number is mainly due to the shock/boundary-layer interaction. The shock interaction with a laminar/transitional boundary-layer causes a wide streamwise pressure diffusion, clearly shown by profile pressure distributions. This has a strong influence on the flow outside of the boundary-layer presented by a quantitative Schlieren image. The transition process, investigated with the analysis of thin-film signals, is induced by the shock-wave and occurs above a separated-flow region. At the higher Reynolds number a shock-induced transition takes place without separation.


Sign in / Sign up

Export Citation Format

Share Document