Three-Dimensional Finite Element Coupled Analysis of a Diesel Engine Piston

2014 ◽  
Vol 684 ◽  
pp. 347-353
Author(s):  
Qi Liu ◽  
Guang Yao Ouyang ◽  
Ping Zhang

The paper analyzed the temperature field and the thermal stress field of a diesel engine piston with finite element analysis software ANASYS, then used the thermal mechanism indirect coupled method, researched the coupled stress field of piston. The result indicated that the point of the highest temperature located on the middle of firebox which under the dangerous temperature of the material; under thermal stress effect, the max displacement of the piston did not exceed the clearance between piston and cylinder liner, but the non-roundness at the third ring reached 0.08mm, which had some influence on the pressurize and lubricate of piston; under thermal mechanism coupled effect, the point of max stress located on the interface of the seat of the pin and the pin hole, so as the top on the pin hole and inner on the seat of pin, so it was recommended to set rib between cervix and the seat of pin of piston to enhance the practical carrying capacity of the seat of the pin.

2013 ◽  
Vol 401-403 ◽  
pp. 59-64
Author(s):  
Qi Liu ◽  
Guang Yao Ouyang ◽  
Ping Zhang

The paper analyzed the temperature field, the thermal stress field and the stress field under mechanical loads of a diesel engine cylinder head with finite element analysis software ANASYS, then took above temperature field results and mechanical loads as boundary conditions to impose on the established model of cylinder head using the thermal mechanism indirect coupled method, researched the stress field and distortion of cylinder head under effect of multiplicative loads. The result indicates that the point of the highest temperature and the maximum thermal stress locates on the middle nose of fire deck; under thermal mechanism coupled effect, the points of maximum stress locate on the interface of bolt head and screw of cylinder head and on the middle nose of fire deck; the maximum pull stress the cylinder head undertook is less than that the material can survive; the distortion of the cylinder head is very small, thus has little influence on the fabrication of other accessories, and the global distortion of cylinder head performs symmetry.


2012 ◽  
Vol 268-270 ◽  
pp. 837-840
Author(s):  
Sen Zhao ◽  
Xiao Hui Cao

In order to reduce the mass ratio of S1110 diesel engine, structural intensity and stiffness analysis are performed on the assembly parts of engine body by using the finite element method. Through comparative analysis of more than one calculation scheme, optimization scheme has been got. To ensure the intensity and stiffness of the engine body is not reduced under the premise, optimization scheme makes the body mass greatly reduced from the original engine body’s 38kg to 13.8kg and the engine mass ratio is reduced from 13.2kg/kW to 11.81kg/kW. The results show that, changing the body material from cast iron materials to cast aluminum materials, the body stress distribution trends are similar, but the cast aluminum body deformation increases; increasing the number of cylinder head bolts to 6 can reduce the deformation of the cylinder liner; a reasonable set of stiffeners can reduce the bearing bore deformation.


2010 ◽  
Vol 156-157 ◽  
pp. 1086-1089
Author(s):  
Yan Xia Wang ◽  
Hui Gao

In this work, the variational trend of the stresses for the diesel engine piston under the operation conditions is analyzed by using finite element method (FEM) and the fatigue strength of the diesel engine piston is evaluated. The muhiaxial stress was converted into the uniaxial stress with the maximum principal stress method, and the material curve is amended by Goodman’s amendment. Finally the fatigue life and the fatigue safety factor of the diesel engine piston is obtained, which provides a better reference for structural improvements and optimization for the design of the piston.


2012 ◽  
Vol 616-618 ◽  
pp. 1745-1750 ◽  
Author(s):  
Ming Hai Li ◽  
Ding Ding Dong

The Cylinder liner is one of the key components of diesel engine. Combustion chamber set is constituted by Piston, Cylinder head, Cylinder liner and other parts. Its structure and working environment is complex. Received the gas pressure, friction force from high-speed reciprocating motion of the piston and lateral force of the piston, it results in mechanical stress and mechanical deformation. High temperature combustion and high pressure gas make the piston temperature distribution uneven, which results in piston thermal stress and thermal deformation. Therefore, the element analysis of Cylinder liner in the heat load and mechanical load is significant, the finite element analysis shows the deformation and the stress distribution of the Cylinder liner. It is meaningful for improving Cylinder liner design and reliability.


2013 ◽  
Vol 444-445 ◽  
pp. 1422-1426
Author(s):  
Li Zi Chen ◽  
Chun Yuan Jing ◽  
Xiao Wei Guan

Based on the theory of the thermal conduction and the thermal elastic equations, does some researches in view of the thermal Damage of K9 glass by finite element analysis. The distribution of temperature field and thermal stress field of the ideal K9 glass which irradiated by 100W pulsed-Nd: YAG laser are simulated with finite element software. The result shows that the temperature of the surface of glass doesnt reach the melting and the thermal stress of it doesnt get to the requirement for fracture strength. Then, the model of K9 glass containing inclusions has be built. The simulation result indicates that inclusions may affect the distribution of temperature field and thermal stress field of the K9 glass, which makes the injected laser beams energy centralize on a small area around the inclusions owing to the existence of the strong absorbing, thus leading to K9 glass laser damage threshold reduction and easier to thermal damage.


2014 ◽  
Vol 971-973 ◽  
pp. 581-583
Author(s):  
Tian Hong Gao

according to the heat load of diesel engine piston, to set up the finite element model and the corresponding thermal boundary conditions of 3D thermal models of the diesel engine piston, Through the finite element analysis , simulating the temperature field. Through the above finite element analysis,getting the temperature field of diesel engine piston, to build a theoretical basis for the development and design of other diesel engine piston.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


2019 ◽  
Vol 7 (1) ◽  
pp. 1977-1986 ◽  
Author(s):  
Chih-Kuang Lin ◽  
Tsung-Ting Chen ◽  
An-Shin Chen ◽  
Yau-Pin Chyou ◽  
Lieh-Kwang Chiang

Sign in / Sign up

Export Citation Format

Share Document