Energy Balance Routing Algorithm Based on Energy Heterogeneous WSN

2014 ◽  
Vol 687-691 ◽  
pp. 3976-3979 ◽  
Author(s):  
Ming Xin Liu ◽  
Xiao Meng Wang

Balancing energy load is a key problem in wireless sensor network (WSN) research. For balancing node energy consumption and prolong the network lifetime, this paper proposes an improved routing algorithm EBRA (Energy Balancing Routing Algorithm) based on energy heterogeneous WSN. To maximize the energy efficiency of network nodes, the EBRA weights the probability of cluster head election. According to the estimate value of the network average remaining energy and the residual energy of network nodes, we can calculate the new cluster head election threshold. The simulation results show that the utilization of energy balance of EBRA algorithm is improved 74%, 30% and 23%, compare with LEACH, SEP and DCHS, respectively.

2014 ◽  
Vol 986-987 ◽  
pp. 2104-2107
Author(s):  
Jing Han ◽  
Dong Ya Chen

How to make good use of the limited energy to maximize the network life span is an important problem of the wireless sensor network. The life of WSN depends on the minimum of the residual energy of its nodes. A fair energy balance routing algorithm is proposed which uses the Ant Colony Optimization Algorithm (ACO) to balance the network energy distribution and extend the network life. The proposed algorithm utilizes the dynamic adaptability and optimization capabilities of the Ant Colony to get a tread off between the shortest path and the fair energy balance. Simulation results show that the proposed algorithm is good at balancing the energy, and it effectively extends the span of the network life.


2012 ◽  
Vol 241-244 ◽  
pp. 1028-1032
Author(s):  
Li Wang ◽  
Qi Lin Zhu

In recent years, as the development of wireless sensor network, people do some deep researches on cluster-based protocol, most around the prolongation of the lifetime of WSN and decline of energy consumed by the sensors. This paper analyses of classical clustering routing protocol based on LEACH, aiming at the node energy foot presents energy improved clustering routing algorithm, the random cluster head selection algorithm of threshold to be changed, lowering the threshold, in the original threshold increases the node's remaining energy factor, reduces the communication load of cluster nodes, and simulation. The simulation results show that the LEACH-E improved algorithm, energy saving, reducing balance node energy consumption, effectively prolongs the network lifetime.


Author(s):  
Dimitris N. Kanellopoulos ◽  
Pratik Gite

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed by several sensors nodes, and one of them is elected as Cluster-head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. This article proposes a new clustering algorithm (EMESISC) that is based on each node's probability of becoming a CH. This node's probability depends on its residual energy, buffer length, and received signal power. We compared EMESISC with LEACH algorithm. Simulation results showed that EMESISC is superior to LEACH.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianpo Li ◽  
Xue Jiang ◽  
I-Tai Lu

Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Mingchuan Zhang ◽  
Ruijuan Zheng ◽  
Ying Li ◽  
Qingtao Wu ◽  
Liang Song

Energy of nodes is an important factor that affects the performance of Wireless Sensor Networks (WSNs), especially in the case of existing selfish nodes, which attracted many researchers’ attention recently. In this paper, we present a reputation-based uneven clustering routing protocol (R-bUCRP) considering both energy saving and reputation assessment. In the cluster establishment phase, we adopt an uneven clustering mechanism which controls the competitive scope of cluster head candidates to save the energy of WSNs. In the cluster heads election phase, the residual energy and reputation value are used as the indexes to select the optimal cluster head, where the reputation mechanism is introduced to support reputation assessment. Simulation results show that the proposed R-bUCRP can save node energy consumption, balance network energy distribution, and prolong network lifetime.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Yanan Wang ◽  
Fuxing Song ◽  
Wenyu Zhang

In wireless sensor networks (WSNs), energy-constrained sensor nodes are always deployed in hazardous and inaccessible environments, making energy management a key problem for network design. The mechanism of RNTA (redundant node transmission agents) lacks an updating mechanism for the redundant nodes, causing an unbalanced energy distribution among sensor nodes. This paper presents an energy-balanced mechanism for hierarchical routing (EBM-HR), in which the residual energy of redundant nodes is quantified and made hierarchic, so that the cluster head can dynamically select the redundant node with the highest residual energy grade as a relay to complete the information transmission to the sink node and achieve an intracluster energy balance. In addition, the network is divided into several layers according to the distances between cluster heads and the sink node. Based on the energy consumption of the cluster heads, the sink node will decide to recluster only in a certain layer so as to achieve an intercluster energy balance. Our approach is evaluated by a simulation comparing the LEACH algorithm to the HEED algorithm. The results demonstrate that the BEM-HR mechanism can significantly boost the performance of a network in terms of network lifetime, data transmission quality, and energy balance.


2020 ◽  
pp. 1372-1385
Author(s):  
P. Padmaja ◽  
G.V. Marutheswar

Wireless Sensor Network (WSN) need to be more secure while transmitting data as well as should be deployed properly to reduce redundancy and energy consumption. WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, a survey of security issues in WSNs is presented and a new algorithm TESDA is proposed, which is an optimized energy efficient secured data aggregation technic. The cluster head is rotated based on residual energy after each round of aggregation so that network lifetime increases. Based on deviation factor calculated, the trust weight is assigned, if more deviation, then the trust value is less. Simulation results observed by using NS-2. From network animator and x-graphs the result are analyzed. Among all protocols tesda is an energy efficient secured data aggregation method.


Sign in / Sign up

Export Citation Format

Share Document