The Effect of Polyvinyl Alcohol (PVA) on the Mix Proportion of Oil Palm Shell (OPS) Concrete

2014 ◽  
Vol 695 ◽  
pp. 297-300
Author(s):  
Chia Chia Thong ◽  
D.C.L. Teo ◽  
Chee Khoon Ng

Oil palm shell (OPS) is a renewable resource obtained from agricultural solid waste after the extraction of palm oil. It has been previously reported that OPS can be used as a coarse aggregate substitute in the manufacture of structural lightweight concrete. Since OPS is an organic material, its properties may degrade after a certain period of time unless pre-treatment is applied on the aggregates. Polyvinyl alcohol (PVA) can be used to treat the OPS before being incorporated as coarse aggregates in concrete. It has been determined that the use of PVA as pre-treatment enables an improvement to the properties of raw OPS aggregates and consequently the resulting concrete. In this research work, the effect of PVA as pre-treatment on OPS aggregates on the mix proportion of OPS concrete was investigated. The results show that there was an increase in the slump values of the OPS concrete made with PVA treated OPS aggregates. The 28-day air-dry density and compressive strength of PVA treated OPS concrete slightly increased as compared to raw OPS concrete.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

This paper presents the effects of low volume fraction(Vf)of polyvinyl alcohol (PVA) fibers on the mechanical properties of oil palm shell (OPS) high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC) high strength lightweight concrete (HSLWC) subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E) value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications.


2014 ◽  
Vol 970 ◽  
pp. 147-152 ◽  
Author(s):  
Willie Wei Shung Chai ◽  
Delsye Teo Ching Lee ◽  
Chee Khoon Ng

Recycling and reusing waste materials as aggregate replacement play an important role in solving issues associated with environmental problems and depletion of non-renewable resources. The use of these waste materials as aggregate is highly desirable as it can serve to sanitise the environment and create cheaper, renewable aggregates which will provide a double advantage as cost effective construction material and waste disposal at the same time. Hence, there is growing interest in this research area to promote safe and economical use of waste material as aggregate alternative in concrete. In Malaysia, where oil palm shell (OPS) is generated in abundance from the oil palm industry, reusing OPS as concrete aggregate replacement has been widely studied. Results from previous studies have shown that OPS concrete can be used in practical application as structural lightweight concrete. However, the properties of OPS can be further improved to achieve better performance of the resulting concrete. Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer which is extensively used in all kinds of industries, such as papermaking, adhesive for plywood, printing and even in the construction industry as internal wall coating, plasterwork and joint sealing. It has been found that PVA has the potential to improve the quality of the OPS aggregates and hence enhance the resulting concrete properties. In this paper, an experimental program on concrete produced from PVA coated OPS aggregates is presented. The PVA treated OPS concrete was tested for slump, air-dry density, compressive strength, and water absorption. It was found that PVA treated OPS concrete had significant improvement in its compressive strength as compared to raw OPS concrete. It was determined that PVA treated OPS concrete can achieve 28-day compressive strength of up to 33.53 MPa. Moreover, it was also determined that there was a decrease of 0.67% in the water absorption of PVA treated OPS concrete as compared to the raw OPS concrete. In general, the investigation results showed that PVA can be used to improve the OPS concrete properties for the production of structural lightweight concrete.


2006 ◽  
Vol 41 (9) ◽  
pp. 1239-1242 ◽  
Author(s):  
M.A. Mannan ◽  
J. Alexander ◽  
C. Ganapathy ◽  
D.C.L. Teo

2015 ◽  
Vol 27 (10) ◽  
pp. 04014264
Author(s):  
Arabi N. S. Al Qadi ◽  
Qahir N. S. Al-Kadi ◽  
Sleiman M. Al-Zaidyeen

Sign in / Sign up

Export Citation Format

Share Document