Improving the Properties of Oil Palm Shell (OPS) Concrete Using Polyvinyl Alcohol (PVA) Coated Aggregates

2014 ◽  
Vol 970 ◽  
pp. 147-152 ◽  
Author(s):  
Willie Wei Shung Chai ◽  
Delsye Teo Ching Lee ◽  
Chee Khoon Ng

Recycling and reusing waste materials as aggregate replacement play an important role in solving issues associated with environmental problems and depletion of non-renewable resources. The use of these waste materials as aggregate is highly desirable as it can serve to sanitise the environment and create cheaper, renewable aggregates which will provide a double advantage as cost effective construction material and waste disposal at the same time. Hence, there is growing interest in this research area to promote safe and economical use of waste material as aggregate alternative in concrete. In Malaysia, where oil palm shell (OPS) is generated in abundance from the oil palm industry, reusing OPS as concrete aggregate replacement has been widely studied. Results from previous studies have shown that OPS concrete can be used in practical application as structural lightweight concrete. However, the properties of OPS can be further improved to achieve better performance of the resulting concrete. Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer which is extensively used in all kinds of industries, such as papermaking, adhesive for plywood, printing and even in the construction industry as internal wall coating, plasterwork and joint sealing. It has been found that PVA has the potential to improve the quality of the OPS aggregates and hence enhance the resulting concrete properties. In this paper, an experimental program on concrete produced from PVA coated OPS aggregates is presented. The PVA treated OPS concrete was tested for slump, air-dry density, compressive strength, and water absorption. It was found that PVA treated OPS concrete had significant improvement in its compressive strength as compared to raw OPS concrete. It was determined that PVA treated OPS concrete can achieve 28-day compressive strength of up to 33.53 MPa. Moreover, it was also determined that there was a decrease of 0.67% in the water absorption of PVA treated OPS concrete as compared to the raw OPS concrete. In general, the investigation results showed that PVA can be used to improve the OPS concrete properties for the production of structural lightweight concrete.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Ramin Hosseini Kupaei ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat

This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

This paper presents the effects of low volume fraction(Vf)of polyvinyl alcohol (PVA) fibers on the mechanical properties of oil palm shell (OPS) high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC) high strength lightweight concrete (HSLWC) subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E) value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Mingkun Yew ◽  
Mingchian Yew ◽  
Lip Huat Saw ◽  
Siongkang Lim ◽  
Jing Hang Beh ◽  
...  

In this study, the effects of heat-treated and non-treated oil palm shell (OPS) species (dura and tenera) are investigated on the slump, density and compressive strength of oil palm shell concrete (OPSC). Two different species of OPS coarse aggregates are subjected to heat treatment at 65 and 130 °C with the duration of 1 h. The results show that the workability of the OPSC increases significantly with an increase in temperature of heat-treated of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 51 and 54 MPa, respectively. Furthermore, rapid chloride penetration tests (RCPT), porosity measurement and water absorption tests were performance to signify the effects of heat treatment on different OPS species lightweight concrete (LWC). The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. The results showed that the ideal of heat treatment method has enhanced the performance of drying shrinkage. Hence, the findings of this study are of primary importance as they revealed that the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability properties and drying shrinkage of OPS LWC.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Mingkun Yew ◽  
Mingchian Yew ◽  
Lip Huat Saw ◽  
Siongkang Lim ◽  
Jing Hang Beh ◽  
...  

In this study, the effects of heat-treated and non-treated oil palm shell (OPS) species (dura and tenera) are investigated on the slump, density and compressive strength of oil palm shell concrete (OPSC). Two different species of OPS coarse aggregates are subjected to heat treatment at 65 and 130 °C with the duration of 1 h. The results show that the workability of the OPSC increases significantly with an increase in temperature of heat-treated of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 51 and 54 MPa, respectively. Furthermore, rapid chloride penetration tests (RCPT), porosity measurement and water absorption tests were performance to signify the effects of heat treatment on different OPS species lightweight concrete (LWC). The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. The results showed that the ideal of heat treatment method has enhanced the performance of drying shrinkage. Hence, the findings of this study are of primary importance as they revealed that the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability properties and drying shrinkage of OPS LWC.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2016 ◽  
Vol 78 (5) ◽  
Author(s):  
Eravan Serri ◽  
Mohd Zailan Suleiman ◽  
Roslan Talib ◽  
Mahyuddin Ramli

The advantage of oil palm shell (OPS) as coarse aggregate in concrete can be extended to insulation concrete capacity. Thus, this paper will explain the durability of oil palm shell lightweight concrete (OPSLC) for insulation concrete capacity in building. Nine mix designs were developed containing high volume of OPS, which is 30, 32 and 34% from total volume of concrete with three different OPS shapes (raw, crushed and partly crushed). The water absorption and drying shrinkage were examined; besides, thermal conductivity testing that was conducted for confirmation as insulation concrete category.  The observation of all the specimens lasted one year for durability performance test and 28 days for thermal conductivity value. The highest water absorption value is 43% from previous study that was designed for structural concrete. Higher OPS volume fraction produced higher air void content and caused water loss and increase of the hydration effects on OPSLC shrinkage. It also affected the microstructure conditions, especially specimens that used 34% of OPS volume fraction which show weak interface bond in cement matrix.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2337
Author(s):  
Leong Tatt Loh ◽  
Ming Kun Yew ◽  
Ming Chian Yew ◽  
Jing Han Beh ◽  
Foo Wei Lee ◽  
...  

Oil palm shell (OPS) is an agricultural solid waste from the extraction process of palm oil. All these wastes from industry pose serious disposal issues for the environment. This research aims to promote the replacement of conventional coarse aggregates with eco-friendly OPS aggregate which offers several advantages, such as being lightweight, renewable, and domestically available. This paper evaluates the mechanical and thermal performances of renewable OPS lightweight concrete (LWC) reinforced with various type of synthetic polypropylene (SPP) fibers. Monofilament polypropylene (MPS) and barchip polypropylene straight (BPS) were added to concrete at different volume fractions (singly and hybrid) of 0%, 0.1%, 0.3% and 0.4%. All specimens were mixed by using a new mixing method with a time saving of up to 14.3% compared to conventional mixing methods. The effects of SPP fibers on the mechanical properties were investigated by compressive strength, splitting tensile strength and residual strength. The strength of the oil palm shell lightweight concrete hybrid 0.4% (OPSLWC–HYB–0.4%) mixture achieved the highest compressive strength of 29 MPa at 28 days. The inclusion of 0.3% of BPS showed a positive outcome with the lowest thermal conductivity value at 0.55 W/m °C. Therefore, the results revealed that incorporation of BPS fiber enhanced the performance of thermal conductivity tests as compared to inclusion of MPS fiber. Hence, renewable OPS LWC was proven to be a highly recommended environmentally friendly aggregate as an alternative solution to replace natural aggregates used in the concrete industry.


2017 ◽  
Vol 902 ◽  
pp. 65-73 ◽  
Author(s):  
Elly Tjahjono ◽  
Ayudia M. Fani ◽  
Dodorus D. Dodi ◽  
Erinda P. Purnamasari ◽  
Feny A. Silaban ◽  
...  

The concrete technology has been growing significantly since years ago especially in Indonesia’s construction. Therefore, Indonesia needs new innovation of concrete technology to solve the problem for the availability of concrete material. Indonesia is known as the largest producer of crude palm oil (CPO) in the world. Oil palm shell (OPS) is one of the solid wastes produced in crude palm oil industry that can be used as concrete materials. This paper presents the experimental results of a research project to produce structural lightweight concrete using oil palm shell (OPS), as a coarse aggregate. This experimental was investigating the effects of adding silica fume, fly ash, and superplasticizer for the compressive strength and flexural strength of the OPS lightweight concrete. It was found that OPS lightweight concrete has compressive strength up to 23.90 MPa in 28-days and flexural strength up to 2.54 MPa in 28-days. This experimental concluded that OPS lightweight concrete has a good potential as a lightweight coarse aggregate and low-cost housing construction in Indonesia.


2014 ◽  
Vol 695 ◽  
pp. 297-300
Author(s):  
Chia Chia Thong ◽  
D.C.L. Teo ◽  
Chee Khoon Ng

Oil palm shell (OPS) is a renewable resource obtained from agricultural solid waste after the extraction of palm oil. It has been previously reported that OPS can be used as a coarse aggregate substitute in the manufacture of structural lightweight concrete. Since OPS is an organic material, its properties may degrade after a certain period of time unless pre-treatment is applied on the aggregates. Polyvinyl alcohol (PVA) can be used to treat the OPS before being incorporated as coarse aggregates in concrete. It has been determined that the use of PVA as pre-treatment enables an improvement to the properties of raw OPS aggregates and consequently the resulting concrete. In this research work, the effect of PVA as pre-treatment on OPS aggregates on the mix proportion of OPS concrete was investigated. The results show that there was an increase in the slump values of the OPS concrete made with PVA treated OPS aggregates. The 28-day air-dry density and compressive strength of PVA treated OPS concrete slightly increased as compared to raw OPS concrete.


Sign in / Sign up

Export Citation Format

Share Document