An Image Segmentation Calculation Based on Differential Box-Counting of Fractal Geometry

2015 ◽  
Vol 719-720 ◽  
pp. 964-968 ◽  
Author(s):  
Tao He ◽  
Long Fei Cheng ◽  
Qing Hua Wu ◽  
Zheng Jia Wang ◽  
Lian Gen Yang ◽  
...  

Differential box-counting of fractal geometry has been widely used in image processing.A method which uses the differential box-counting to segment the gathered images is discussed in this paper . It is to construct a three-dimensional gray space and use the same size boxes to contain the three dimensional space.The number of boxes needed to cover the entire image are calculated .Different sizes of boxes can receive different number of boxes, so least squares method is used to calculate the fractal dimension. According to the fractal dimension parameters, appropriate threshold is chose to segment the image by using binarization .From the handle case of bearing pictures can be seen that image segmentation based on differential box-counting method can get clear image segmentation .This method is easy to understand, to operate, and has important significance on computer image segmentation .

Fractals ◽  
1994 ◽  
Vol 02 (02) ◽  
pp. 321-324 ◽  
Author(s):  
S. KYRIACOS ◽  
S. BUCZKOWSKI ◽  
F. NEKKA ◽  
L. CARTILIER

Fractal geometry has been widely used to characterize irregular structures. Our interest in applying this concept in biomedical research leads us to the conclusion that there are no standard methods. In order to objectively set parameters involved in the estimation of fractal dimension, a significantly more accurate and efficient box-counting method based on a new algorithm was developed. Measurements of mathematical objects with known fractal dimension was performed using the traditional method and the proposed modification. The latter always yields results with less than 1% difference from the theoretical value, which represents a significant improvement.


Author(s):  
Robert Garafutdinov ◽  
◽  
Sofya Akhunyanova ◽  

This paper continues research within the framework of the scientific direction in econophysics at the Department of Information Systems and Mathematical Methods in Economics of the faculty of Economics of PSU. Modeling and prediction of financial time series is quite a perspective area of research, because it allows participants of financial processes to reduce risks and make effective decisions. For example, we could research financial processes with the help of fractal analysis. In the article there is studied and worked out in detail one of the methods of fractal analysis of financial time series – the box-counting method for assessment of the fractal dimension. This method is often used in studies conducted by domestic authors, but the authors do not delve into the characteristics and problems of using the box-counting method for analysis of time series, that means that the answers to the interested questions have not yet been given. The main problem is that, as a rule, the analyzed object in the tasks of applying the box-counting method to time series is a computer image of the plot of series. In the article there is proposed the procedure of adaptation of the box-counting method for assessment of the fractal dimension of time series, the procedure does not require the formation of a computer image of the plot. In the article there is considered following difficulties developed from this adaptation: 1) high sensitivity of the resulting estimation of the dimension to the input parameters of the method (the ratio of the sides of the covered by cells plane with the plot; the used range of lengths of the side of the cell; the number of partitions of the plane into cells); 2) the non-obviousness of choosing the optimal values ​​of these parameters. In the article there are analyzed approaches to the selection of these parameters that were proposed by other authors, and there are determined the most suitable approaches for the adapted box-counting method. Also there are developed unique methods for determining the ratio of the sides of the plane with the plot. In the paper there is written the computer program that implements the developed method, and this program is tested on the generated data. The study obtained the following results. The fact of sensitivity of the adapted box-counting method to input parameters is confirmed, that indicates the high importance of the correct choice of these parameters. According to the study, there is found out inability of the proposed methods of automatic determination the ratio of the sides of the plane in relation to artificial time series. There are obtained the most precise (in a statistical sense) estimates of fractal dimension, those found by means of the adapted box-counting method, with the fixed ratio of the sides 1:1. According to comparing the adapted box-counting method and R/S analysis, there are obtained the most precise estimates by the second method (R/S analysis). Finally in the paper there are formulated the possible directions for further research: 1) comparison of the accuracy of various methods for assessment of the fractal dimension on series of different lengths; 2) comparison of the methods of fractal analysis and p-adic analysis for modeling and prediction of financial time series; 3) determination of the conditions of applicability of various methods; 4) approbation of the developed methods for determining of the ratio of the sides of the plane with the plot on real economic data.


2021 ◽  
Author(s):  
Nicholas Dudu ◽  
Arturo Rodriguez ◽  
Gael Moran ◽  
Jose Terrazas ◽  
Richard Adansi ◽  
...  

Abstract Atmospheric turbulence studies indicate the presence of self-similar scaling structures over a range of scales from the inertial outer scale to the dissipative inner scale. A measure of this self-similar structure has been obtained by computing the fractal dimension of images visualizing the turbulence using the widely used box-counting method. If applied blindly, the box-counting method can lead to misleading results in which the edges of the scaling range, corresponding to the upper and lower length scales referred to above are incorporated in an incorrect way. Furthermore, certain structures arising in turbulent flows that are not self-similar can deliver spurious contributions to the box-counting dimension. An appropriately trained Convolutional Neural Network can take account of both the above features in an appropriate way, using as inputs more detailed information than just the number of boxes covering the putative fractal set. To give a particular example, how the shape of clusters of covering boxes covering the object changes with box size could be analyzed. We will create a data set of decaying isotropic turbulence scenarios for atmospheric turbulence using Large-Eddy Simulations (LES) and analyze characteristic structures arising from these. These could include contours of velocity magnitude, as well as of levels of a passive scalar introduced into the simulated flows. We will then identify features of the structures that can be used to train the networks to obtain the most appropriate fractal dimension describing the scaling range, even when this range is of limited extent, down to a minimum of one order of magnitude.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Youping Fan ◽  
Dai Zhang ◽  
Jingjiao Li

The paper aims to understand how the fractal dimension and growth time of electrical trees change with temperature and moisture. The fractal dimension of final electrical trees was estimated using 2-D box-counting method. Four groups of electrical trees were grown at variable moisture and temperature. The relation between growth time and fractal dimension of electrical trees were summarized. The results indicate the final electrical trees can have similar fractal dimensions via similar tree growth time at different combinations of moisture level and temperature conditions.


Author(s):  
M. van Leeuwen ◽  
J. A. N. van Aardt ◽  
T. Kampe ◽  
K. Krause

Monitoring forest productivity and health is key to sustainable ecosystem management and informed decision making. A key parameter used in monitoring forest resources is the leaf area index (LAI), which is defined as the one-sided leaf area per unit ground area and is used to describe the canopy radiation regime, among other forest biophysical dynamics. Traditional optics-based methods to estimate LAI rely on the measurement of canopy transmission and foliage clumping. Extending optical methods to LiDAR data has been challenging and studies have reported effective LAI assessments, with no further quantification of foliage clumping. This study investigates the use of the box-counting method to assess the fractal dimension of point cloud data for contrasting forest types and along a gradient of foliage dispersal. We demonstrate the box-counting method on simulated ‘range-to-hit’, as well as acquired airborne discrete LiDAR data. Coherent results obtained from the different test cases hint at the potential of the box-counting fractal dimension to characterize foliage clumping and bode well for the use of clumping assessments in support of airborne, wall-to-wall estimates of LAI.


2019 ◽  
Vol 1 ◽  
pp. 281-287
Author(s):  
N N Abdulsalam ◽  
O Ologe

Fractal characterization of Earthquake occurrences in Nigeria was carried out in order to know the b-value of tremor occurrences in the country. This will help in hazard analysis and research in the geological and geophysical structures of Nigeria. The method used in determining the b-value is the box counting method, but for simplicity, we used circle. The areas that are tremor prone were posted on a digitized Nigeria map using Google earth and Surfer 7.0 software. The computation with the box counting method was performed with picked radius of the circle from 50km - 350km and the average number of points that falls within each circle were recorded. The graph of log r (the logarithms of radius of circle or scale) against log <N> (logarithms of average number of points) was plotted using grapher and excels Microsoft word and the slope of the graph was determined. The determined slope gave the fractal dimension and the b-value was thus calculated. In this work, a b-value of 0.6 was obtained indicating that Nigeria falls within seismically less active zone.


2020 ◽  
pp. 30-42
Author(s):  
Anna Zhurba ◽  
Michail Gasik

An essential element of fractal analysis of functional coatings is the fractal dimension, which is an important quantitative characteristic. Typically, coating images are represented as colored or halftone, and most fractal dimension algorithms are for binary images. Therefore, an important step in fractal analysis is binarization, which is a threshold separation operation and the result of which is a binary image.The purpose of the study is to study and program the methods of image binarization and to study the influence of these methods on the value of fractal dimension of functional coatings.As a result of the binarization threshold, the image is split into two regions, one containing all pixels with values below a certain threshold and the other containing all pixels with values above that threshold. Of great importance is the determination of the binarization threshold.The study analyzed a number of functional coating images, determined the fractal dimension of the image by the Box Counting method at different binarization thresholds and when applying different binarization methods (binarization with lower and upper threshold, with double restriction, and the average method for determining the optimal binarization threshold) images. The Box Counting method is used to depict any structure on a plane. This method allows us to determine the fractal dimension of not strictly self-similar objects. Each image binarization method is used for different types of images and for solving different problems.As a result, the methods of image binarization were developed and implemented, the fractal dimension of binary images was calculated, and the influence of these methods on the value of fractal dimension of functional coatings was investigated.The surfaces of composite steel structure, metallic porous materials, and natural cave structures are analyzed.


2019 ◽  
Author(s):  
Bahary Setyawan ◽  
Benyamin Sapiie

Abstract. This study discusses the correlation between the fractal of spatial epicentre distribution of aftershock (D2) and active fault (D0) in the Sumatra region. We identified 15 earthquakes in this region that were followed by aftershock cluster and related to the Sumatra Fault Zone or Southern Andaman West Fault. The spatial epicentre distribution of the aftershock was estimated by using two-point correlation integral and the D2 values found were varying from 1.03 ± 0.03 to 1.68 ± 0.08. We estimated the fractal dimension of the active fault by using Box–Counting Method and found that the variation of D0 values in the range of 0.95 ± 0.03 to 1.16 ± 0.01. Positive correlation was found in this study and two patterns were identified that had similar slope with different intercept. However, there was also a correlation that had steeper slope. The steeper slope was related to earthquake doublet mechanism that could generate more random spatial distribution of the aftershock in the fault system.


Author(s):  
Ehsan Reza ◽  
Ozgur Dincyurek

Mathematical algorithm and nonlinear theories were used in order to study the establishment and development of traditional settlements since the second half of twentieth century. In order to interrogate vernacular architecture, fractal geometry is one of the most advanced methodologies in this study. Vernacular architecture is an organic architecture, which is formed in response to environmental, cultural, economical factors. There are plenty of variations in topography; climate and geographical issues among the mountainous areas in Iran. Therefor, there are many useful thought, which can be learnt from the existing vernacular architecture. This study is going to investigate fractal pattern of housing in Masouleh village, Iran. By referring to the fractal dimension calculated with box counting method, different type of information will be collected and this attempt will help decision makers, planners, architects and designers, especially in new housing developments.


Sign in / Sign up

Export Citation Format

Share Document