The Optical Properties of Doped Silicon Nanotubes

2014 ◽  
Vol 722 ◽  
pp. 14-17 ◽  
Author(s):  
Chun Ya Luo ◽  
Zhi Gao Lan ◽  
Jie Feng ◽  
Ming Zhe Hu ◽  
Zhen Xun Fu

We perform the first-principles calculations within the framework of density functional theory to determine the electronic structure and optical properties of P-doped and B-doped silicon nanotubes. The results indicate that the electronic structure and optical properties of P-doped and B-doped silicon nanotubes are sensitive to the impurity composition. In particular, when doped with P or B, obviously the band gap decreases and the conductivity enhanced, the P-doped and B-doped silicon nanotubes displays a closer band structure and the unit cell volume of doped silicon nanotubes increased than before doping, the change depends on the doping charge and Si-Si bond length dSi-Si. Moreover, the dielectric constant decreases and increased when doped P and B, the optical absorption peak obviously has a blue shift and red shift respectively. The calculated results provide important theoretical guidance for the applications of Uv detector and the solar cell in optical detectors.

2014 ◽  
Vol 63 (6) ◽  
pp. 067102
Author(s):  
Yu Zhi-Qiang ◽  
Zhang Chang-Hua ◽  
Lang Jian-Xun

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 424
Author(s):  
Cuihua Zhao ◽  
Baishi Li ◽  
Xi Zhou ◽  
Jianhua Chen ◽  
Hongqun Tang

The electronic structures and optical properties of pure, Ag-doped and S-doped α-Fe2O3 were studied using density functional theory (DFT). The calculation results show that the structure of α-Fe2O3 crystal changes after Ag and S doping, which leads to the different points of the high symmetry of Ag-doped and S-doped α-Fe2O3 with that of pure α-Fe2O3 in the energy band, as well as different Brillouin paths. In addition, the band gap of α-Fe2O3 becomes smaller after Ag and S doping, and the optical absorption peak shifts slightly toward the short wavelength, with the increased peak strength of S/α-Fe2O3 and the decreased peak strength of Ag/α-Fe2O3. However, the optical absorption in the visible range is enhanced after Ag and S doping compared with that of pure α-Fe2O3 when the wavelength is greater than 380 nm, and the optical absorption of S-doped α-Fe2O3 is stronger than that of Ag-doped α-Fe2O3.


2009 ◽  
Vol 79-82 ◽  
pp. 1245-1248 ◽  
Author(s):  
Pei Lin Han ◽  
Xiao Jing Wang ◽  
Yan Hong Zhao ◽  
Chang He Tang

Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 640-646 ◽  
Author(s):  
Mei Tang ◽  
JiaXiang Shang ◽  
Yue Zhang

The electronic structure and optical properties of oxygen vacancy and La-doped Cd2SnO4 were calculated using the plane-wave-based pseudopotential method based on the density functional theory (DFT) within the generalized gradient approximation (GGA).


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 815
Author(s):  
Wei Cheng ◽  
Chen Cheng ◽  
Baolin Ke

Pyrite is a mineral often associated with coal in coal seams and is a major source of sulfur in coal. Coal–pyrite is widely distributed, easily available, low-cost, and non-toxic, and has high light absorption coefficient. So, it shows potential for various applications. In this paper, the density-functional theory (DFT + U) is used to construct coal–pyrite with carbon doped in the sulfur and iron vacancies of pyrite. The effects of different carbon defects, different carbon doping concentrations, and different doping distributions in the same concentration on the electronic structure and optical properties of coal–pyrite were studied. The results show that the absorption coefficient and reflectivity of coal–pyrite, when its carbon atom substitutes the iron and sulfur atoms in the sulfur and iron vacancies, are significantly higher than those of the perfect pyrite, indicating that coal–pyrite has potential for application in the field of photovoltaic materials. When carbon is doped in the sulfur vacancy, this impurity state reduces the width of the forbidden band; with the increase in the doping concentration, the width of the forbidden band decreases and the visible-light absorption coefficient increases. The distribution of carbon impurities impacts the band gap but has almost no effect on the light absorption coefficient, complex dielectric function, and reflectivity, indicating that the application of coal–pyrite to photovoltaic materials should mainly consider the carbon doping concentration instead of the distribution of carbon impurities. The research results provide a theoretical reference for the application of coal–pyrite in the field of photoelectric materials.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Lili Cai ◽  
Cuiju Feng

The effect of gallium vacancy (VGa) and nitrogen vacancy (VN) defects on the electronic structure and optical properties of GaN using the generalized gradient approximation method within the density functional theory were investigated. The results show that the band gap increases in GaN with vacancy defects. Crystal parameters decrease in GaN with nitrogen vacancy (GaN:VN) and increase in GaN with gallium vacancy (GaN:VGa). The Ga vacancy introduces defect levels at the top of the valence band, and the defect levels are contributed by N2p electron states. In addition, the energy band shifts to lower energy in GaN:VNand moves to higher energy in GaN:VGa. The level splitting is observed in the N2p states of GaN:VNand Ga3d states of GaN:VGa. New peaks appear in lower energy region of imaginary dielectric function in GaN:VNand GaN:VGa. The main peak moves to higher energy slightly and the intensity decreases.


2013 ◽  
Vol 373-375 ◽  
pp. 1965-1969
Author(s):  
Kun Nan Qin ◽  
Ling Zhi Zhao ◽  
Yong Mei Liu ◽  
Fang Fang Li ◽  
Chao Yang Cui

The electronic structure and optical properties of Cu-doped SnS2with Sn-substituted content of 0, 12.5 and 37.5 at.% were successfully calculated by the first principles plane-wave pseudopotentials based on the density functional theory. It is found that the intermediate belts appear near the Fermi level and the energy band gap becomes narrower after the doping of the Cu atoms. The absorption peaks show a remarkable redshift and the absorption region broadens relatively after introducing acceptor impurity level. When Sn atoms of 37.5 at% were substituted by Cu, the optical absorption coefficient is significantly improved in the frequency range below 5.58 eV and over 8.13 eV.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850178 ◽  
Author(s):  
Xuefeng Lu ◽  
Xu Gao ◽  
Junqiang Ren ◽  
Cuixia Li ◽  
Xin Guo ◽  
...  

Bandgap tailoring of [Formula: see text]-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al–P and As–P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al–P and Al–As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al–P and Al–As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document