Journal of Atomic Molecular and Optical Physics
Latest Publications


TOTAL DOCUMENTS

62
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By Hindawi Limited

1687-9236, 1687-9228

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Robert J. Hinde

We examine the interaction between an open-shell chlorine atom and a para-H2 molecule in the region of configuration space that corresponds to a weakly bound Cl–para-H2 van der Waals dimer. By constructing and diagonalizing the Hamiltonian matrix that represents the coupled Cl atom electronic and H2 rotational degrees of freedom, we obtain one-dimensional energy curves for the Cl–para-H2 system in this region of configuration space. We find that the dimer exhibits fairly strong electronic-rotational coupling when the Cl–H2 distance R is close to ; however, this coupling does not modify substantially the positions and depths of the van der Waals wells in the dimer’s curves. An approximation in which the para-H2 fragment is treated in the strict limit thus appears to yield an accurate representation of those states of the weakly bound Cl–para-H2 dimer that correlate with H2 in the limit.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Mark E. Brezinski

The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within each interferometer arm. However, our analysis demonstrates, the phonon fields between arms become correlated as a result of single-photon wavepacket path indistinguishability, not true nonlocal entanglement. We also note that a coherence expansion (as opposed to decoherence) resulted from local entanglement which was not recognized. It occurred from nearly identical Raman scattering in each arm (importantly not meeting the Born and Markovian approximations). The ability to establish nonlocal macroscopic quantum correlations through path indistinguishability rather than entanglement offers the opportunity to greatly expand quantum macroscopic theory and application, even though it was not true nonlocal entanglement.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. Bahrawi ◽  
N. Farid ◽  
M. Abdel-Hady

Industrial applications need regular testing for the lifetime, movement, strength, and performance of manufacturing machines during production process. Since speckle photography is a simple economic technique, it is used in investigating object response under mechanical and thermal effects depending on the movement of the speckle patterns with respect to the deformation strength and direction. In the present work, the cross-correlation technique is used to analyze the speckle patterns by iterative method to define both values and directions of rigid body translation and expansion. In order to check the accuracy of the cross-correlation technique, the results are compared with the displacement values given by analyzing the Young's interference fringes resulted from the Fourier transformation of the speckle patterns. This noncontact technique is found to be accurate and informative depending on the stability and sensitivity of the optical system. This method of measurement is an effective tool in studying the hard cases of objects and machines under various effects.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Anita Kanwar ◽  
Priya S. Yadav

The refractive indices of the cholesteric liquid crystal solution were measured using multiwavelength (visible range) refractometer for three different wavelengths. Measurements were made at different temperatures for various concentrations of the solution, mixing CLC in a soluble solvent. Vuks equation describes the wavelength and temperature dependence of refractive indices of anisotropic crystalline materials. We have used a simplified version of Vuks equation relating only to macroscopic indices and verified its validity for five-different-concentration solution at various temperatures. The result is also used to obtain molecular polarizabilities and temperature dependent material constants of our sample.


2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Sergey S. Stafeev ◽  
Victor V. Kotlyar

Previously (Chen et al., 2004), it was shown that dielectric cylinder can form focal spots with small diameters and long depth. This type of focal spot was called photonic nanojet. In this paper, it was shown that dielectric cylinder of radius 595 nm (1.12 of wavelength) forms near the surface a photonic nanojet with diameter equal to 0.31 of wavelength and depth of focus equal to 0.57 of wavelength. Adding truncated concentric rings with radiuses equal to radiuses of zone plate to the cylinder increases the depth of focus to 1.18 of the wavelength. The diameter and intensity of focal spot near the cylinder surface remain unchanged.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Mohd Zul Helmi Rozaini

Temperature dependent phase behavior of pseudo-ternary Gemini surfactant + 1-hexanol (1 : 5 molar ratios)/oil/water systems is reported from 0°C to 65°C. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as strong) has been investigated on the temperature induced phase behavior of the ternary system. At surfactant concentration, Φs=40%, a “nose-shaped” microemulsion region is observed. Below one-phase microemulsion region, Lα phase appears. The presence of NaCl decreases the domain size of 1Φ micellar region whereas oxalic acid first decreases the domain below Φw<18 and then increases above Φw>18 in the lower boundary of the phase diagram. The critical weight fraction of water Φwcri decreases in presence of both electrolytes. However, Φwmax increases in presence of oxalic acid and remains constant in presence of NaCl as compared to salt-free system. Furthermore, when cyclohexane was replaced by a longer straight chain hydrocarbon, dodecane, the domain of the one-phase microemulsion region is tremendously increased.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Ryo Namiki

We consider the probability that a bipartite quantum state contains phase-conjugate-state (PCS) pairs and/or identical-state pairs as signatures of quantum entanglement. While the fraction of the PCS pairs directly indicates the property of a maximally entangled state, the fraction of the identical-state pairs negatively determines antisymmetric entangled states such as singlet states. We also consider the physical limits of these probabilities. This imposes fundamental restrictions on the pair appearance of the states with respect to the local access of the physical system. For continuous-variable system, we investigate similar relations by employing the pairs of phase-conjugate coherent states. We also address the role of the PCS pairs for quantum teleportation in both discrete-variable and continuous-variable systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-1
Author(s):  
Marek J. Wójcik ◽  
Paul Blaise ◽  
Joanna Sadlej ◽  
Henryk Flakus

2012 ◽  
Vol 2012 ◽  
pp. 1-1
Author(s):  
Zeev Zalevsky ◽  
Yuval Garini ◽  
Rachela Popovtzer ◽  
Pietro Ferraro

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
J. M. Christian ◽  
E. A. McCoy ◽  
G. S. McDonald ◽  
J. Sánchez-Curto ◽  
P. Chamorro-Posada

We consider arbitrary angle interactions between spatial solitons and the planar boundary between two optical materials with a single power-law nonlinear refractive index. Extensive analysis has uncovered a wide range of new qualitative phenomena in non-Kerr regimes. A universal Helmholtz-Snell law describing soliton refraction is derived using exact solutions to the governing equation as a nonlinear basis. New predictions are tested through exhaustive computations, which have uncovered substantially enhanced Goos-Hänchen shifts at some non-Kerr interfaces. Helmholtz nonlinear surface waves are analyzed theoretically, and their stability properties are investigated numerically for the first time. Interactions between surface waves and obliquely incident solitons are also considered. Novel solution behaviours have been uncovered, which depend upon a complex interplay between incidence angle, medium mismatch parameters, and the power-law nonlinearity exponent.


Sign in / Sign up

Export Citation Format

Share Document