Specific Features of Calculating Underground Structures Erected with Use of Freezing Method

2015 ◽  
Vol 725-726 ◽  
pp. 179-184
Author(s):  
Igor Sakharov ◽  
Vladimir Paramonov

The article regards the problems arising in building the underground structures and, in particular, escalator tunnels under the built-up areas. In case of a thick mass of weak water-saturated soil such tunnels are frequently made with the use of freezing method. The purpose of this article consists in evaluating influence of the established and degrading ice structures on soils deformations and objects contacting with them. It is offered to assess this influence using the finite elements method contemplating a consecutive solution of temperature tasks and the tasks of stress and strain state of soil in time in 3D erection. The article describes briefly the formula part and specific features of calculating temperatures and deformations of soils. By way of example a calculation of defrosting deformations around an inclined tunnel for one of the deep-laid subway stations in Saint-Petersburg has been made. The data of performed calculation are closely approximated to the full-scale measurements.

Author(s):  
M.A. Sonnov ◽  
A.V. Trofimov ◽  
A.E. Rumyantsev ◽  
S.V. Shpilev

The study is exemplified by complex workings of a main ore pass that include a variety of underground structures, usually with unique dimensions which depend on the function and size of the equipment placed. The technical solutions for the underground crushing plant and associated structures envisage construction of chambers with the height of up to 35 m and the width of up to 20 m at the depths exceeding 800-1000 m. Such conditions call for a closer attention to be paid to the mine support parameters, especially the bolting depth. A block geomechanical model was designed in the Micromine Mining Software for the rock mass of the new main ore pass. Geotechnical boreholes logs and results of physical and mechanical rock tests were used as the input data for the model. Four domains were identified in the block geomechanical model for subsequent numerical modelling. A 3D model of the stress-and-strain state of the rock mass was made using the CAE Fidesys software based on the Micromine wire-frame model of the main ore pass. The history of the rock mass incremental loading was reconstructed for correct simulation of its stress-and-strain state. Prior to the excavation, the rock mass is pre-stressed by the weight of the rock strata. The excavation phase was then simulated in the stepwise manner. An array of points with the values of maximum principal stresses was downloaded from the numerical model post-processing program and interpolated into the block geomechanical model to refine the SRF parameter of the Barton's Q rating. Based on the obtained Q values, the mine support parameters for chambers were determined using the Barton, Hutchinson and Potvin empirical methods.


2019 ◽  
Vol 254 ◽  
pp. 02025
Author(s):  
Marcin Nabrdalik ◽  
Michał Sobociński

The paper presents the numerical analysis of stress and strain occurring in the most wearable parts of hip and knee joints endoprostheses. The complexity of the processes taking place in both, natural and artificial joints, makes it necessary to conduct the analysis on the 3D model based on already existing mathematical models. Most of the mechanical failures in alloplasty are caused by material fatigue. To cut down the risk of it, we can either increase the fatigue resistance of the material or decrease the load strain. It is extremelly important to indicate the areas where damage or premature wear may occur. The Finite Elements Method makes it possible to calculate the stress and strain in particular elements of the tested models. All presented numerical calculations define quality conclusions concerning the influence of some parameters of endoprostheses on the values of stress and strain that are formed in polyethylene parts of endoprotheses of hip and knee joints. The obtained results help to reveal “weak points” in examined models and thus, counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The numerical analysis was performed basing on the finite elements method using Autodesk Simulation Mechanical 2017 software and the ADINA 7.5.1.


2019 ◽  
Vol 19 (1-2) ◽  
pp. 131-139
Author(s):  
D. A Trunin ◽  
A. V Revyakin ◽  
M. A Postnikov ◽  
I. N Kolganov ◽  
I. A Zakharova ◽  
...  

This work is devoted to the study of the stress-strain state (SSS) model by using the finite-elements method (FEM) of jaw-bones (the system of lower jaw (LJ) - upper jaw (UJ)) and is the next step in understanding the mechanism of mastication as one of the main functions of the maxillofacial system (MFS). At the same time, reliable information about SSS of the LJ and UJ bones with account of the peculiarities of their anatomical and topographical structure will, firstly, reveal the main regularities of the jaw bone deformations. It will make possible to choose prosthetic appliances that will provide the minimum level of intensity of atrophic processes in supporting tissues and the most favorable biomechanical interaction of bone structures, soft tissues and elements of the prosthetic appliance. The results of mathematical calculations allowed to identify the characteristic features of the deformation and interaction of the LJ and UJ bones, which will ensure a scientifically based choice of those prosthetic appliances contributing to the most prolonged and normal functioning of the maxillofacial system in general.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 49-56 ◽  
Author(s):  
A. M. Lepikhin ◽  
V. V. Moskvichev ◽  
A. E. Burov ◽  
E. V. Aniskovich ◽  
A. P. Cherniaev ◽  
...  

The results of unique experimental studies of the strength and service life of a metal-composite high-pressure tank are presented. The goal of the study is to analyze the fracture mechanisms and evaluate the strength characteristics of the structure. The methodology included tests of full-scale samples of the tank for durability under short-term static, long-term static and cyclic loading with internal pneumatic pressure. Generalized test results and data of visual measurements, instrumental and acoustic-emission control of deformation processes, accumulation of damages and destruction of full-scale tank samples are presented. Analysis of the strength and stiffness of the structure exposed to internal pneumatic pressure is presented. The types of limiting states of the tanks have been established experimentally. Change in the stress-strain state of the tank under cyclic and prolonged static loading is considered. Specific features of the mechanisms of destruction of a metal-composite tank are determined taking into account the role of strain of the metal liner. The calculated and experimental estimates of the energy potential of destruction and the size of the area affected upon destruction of the tank are presented. Analysis of test results showed that the tank has high strength and resource characteristics that meet the requirements of the design documentation. The results of the experiments are in good agreement with the results of numerical calculations and analysis of the stress-strain state and mechanisms of destruction of the metal-composite tank.


Author(s):  
Nikolay A. Makhutov ◽  
◽  
Dmitry A. Neganov ◽  
Eugeny P. Studenov ◽  
◽  
...  

In the factory, pipes for trunk oil and oil product pipelines are obtained by molding and welding. To ensure a cylindrical shape and reduce technological residual stresses, expansion technology is used. Pipe expansion causes a significant change in the values of residual deformations and stresses. The article presents both the calculation results and graphs regarding stress and strain distribution during bending of the stock and their redistribution after expansion. Based on the calculation results, the final total values of residual stresses and residual deformations caused by bending and expansion were stated to be important components of the stress-strain state observed in pipelines being operated under cyclic loading, as well as those used in assessing how degradation affects the ductility of the pipe material. These factors were concluded as being reasonably taken into account when performing verification calculations regarding long-running pipelines if, based on their diagnostics and analysis, their state does not meet modern strength requirements.


Sign in / Sign up

Export Citation Format

Share Document