Tensile Properties and Morphology of Polylactic Acid (PLA)/Ethylene Vinyl Acetate (EVA)

2015 ◽  
Vol 735 ◽  
pp. 57-60
Author(s):  
Abdul Manan Siti Najihah ◽  
Zurina Mohamad

In this study, ethylene vinyl acetate (EVA) was blended with Polylactic acid (PLA) in order to enhance the mechanical properties of PLA. PLA/EVA blend was melt blended in a twin screw extruder and compression molding with various EVA content (0-20% by weight) and the tensile and morphological properties were examined. The morphological behaviours play an important role in influencing the tensile properties of PLA. The smaller discrete EVA particle in PLA matrix had increased the properties of PLA compared with the one with elongated morphology.

2014 ◽  
Vol 554 ◽  
pp. 194-198
Author(s):  
Abdul Manan Siti Najihah ◽  
Zurina Mohamad

The objective of the study is to improve the mechanical properties of Polylactic acid (PLA)/Ethylene Vinyl Acetate (EVA) blend. The blend was prepared via twin screw extruder and compression molding with different composition. The effect of different blend ratio on the mechanical properties was investigated by Tensile and Flexural test. The mechanical properties of PLA shown an improvement compared to the pure PLA with the incorporation of EVA. The flexural modulus increased with the increased of EVA content, while the tensile and flexural strength also increased when EVA increased. The optimum tensile and flexural strength was at 90PLA/10EVA of blends ratio.


2014 ◽  
Vol 554 ◽  
pp. 62-65 ◽  
Author(s):  
Noora Tiqah Mohamad Fauzi ◽  
Zurina Mohamad

The objective of this study is to investigate the effect of sepiolite concentration (2-10 phr) on the mechanical properties of polyamide 6 (PA6) / ethylene vinyl acetate (EVA) blend at the ratio 80/20. Twin screw extruder and injection moulding machine were used to prepare the samples. The strength and modulus of flexural was increased until 6 phr of sepiolite content. On the other hand, the impact strength of PA6/EVA/sepiolite composite was decreased gradually as sepiolite content increased.


2014 ◽  
Vol 970 ◽  
pp. 259-262
Author(s):  
Hossein Cheraghi Bidsorkhi ◽  
Zurina Mohamad

Ethylene Vinyl Acetate (EVA)/Sepiolite nanocomposites were prepared by melt extrusion using a counter-rotating twin-screw extruder followed by injection molding. Sepiolite was loaded in EVA is varies at 1, 3, 5 and 7 wt%. The mechanical properties of EVA/Sepiolite nanocomposites were studied through tensile test. The flame retardancy of nanocomposites were studied for limiting oxygen index (LOI). LOI tests show that the flame retardancy of nanocomposites were increased with increase ratio of sepiolite in EVA/Sepiolite nanocomposite. The tensile properties of EVA/Sepiolite nanocomposites were also increased with increased Sepiolite content in nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2015 ◽  
Vol 735 ◽  
pp. 70-74
Author(s):  
Ibrahim Mohammed Inuwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

This work investigates the effect of compatibilizer concentration on the mechanical properties of compatibilized polyethylene terephthalate (PET) /polypropylene (PP) blends. A blend containing 70 % (wt) PET, 30 % (wt) PP and 5 - 15 phr compatibilizers were compounded using counter rotating twin screw extruder and fabricated into standard test samples using injection molding. The compatibilizer used is styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (SEBS-g-MAH). Morphological studies show that the particle size of the dispersed PP phase is dependent on the compatibilizer content up to 10 phr. Impact strength and elongation at break showed maximum values with the addition of 10 phr SEBS-g-MAH and a corresponding decrease in flexural and young’s moduli; and strengths.. Overall the mechanical properties of PET/PP blends depend on the control of the morphology of the blend and can be achieved by effective compatibilization using 10 phr SEBS-g-MAH.


2015 ◽  
Vol 1119 ◽  
pp. 283-287
Author(s):  
Sarit Liprapan ◽  
Thumnoon Nhujak ◽  
Pranut Potiyaraj

The objective of this study is to prepare α-cellulose reinforced poly (butylene succinate) composites (PBS/α-cellulose). The effect of amount α-cellulose on the mechanical properties of the composites was investigated. To improve interfacial interaction between PBS and α-cellulose, glycidyl methacrylate grafted poly (butylene succinate) (PBS-g-GMA) was used as a compatibilizer. Mechanical properties of PBS composites prepared by using a twin-screw extruder were investigated. The mechanical properties of PBS/α-cellulose decreased due to the agglomeration of α-cellulose. Nevertheless, tensile strength, Young’s modulus and flexural strength of PBS composites were improved after the incorporation of PBS-g-GMA. The optimum loading of PBS-g-GMA and α-cellulose in the PBS was found to be 5 and 6 phr.


Sign in / Sign up

Export Citation Format

Share Document