A Method of Indoor Localization Based on BLE4.0 Protocol of Using Beacons

2015 ◽  
Vol 740 ◽  
pp. 765-768
Author(s):  
He Shan Bian ◽  
Zhao Hui Li ◽  
Fang Zhao

In this paper we discuss our attempt to solve the problem of HAIP(High Accuracy Indoor Position) by using BLE4.0(Bluetooth Low Energy). According to previous research, Wi-Fi Positioning has mainly faced some big challenges. Accuracy is deteriorated by directional handset antennas, which affect the relative AP signal strength; Practical maximum reachable accuracy is 3-10 meters depending on environment; Wi-Fi activities is a big consumption of battery on Mobile Terminal; Now, The Bluetooth Low Energy technology is getting mature. In this paper, we use Bluetooth low energy on iOS device to solve the problem of high accuracy indoor position. In the data-preprocessing step, we use Kalman filter to process the RSSI. In the transition step of RSSI to Distance, we propose a novelty method to adjust the parameters of Log-Distance model dynamically and adaptively according to diagonal beacons’ measurement. We implement our technique and algorithm on iOS device with iOS7.0 SDK. The result shows that error reduced to 0.5m-1.2m range depending on the distance, achieved smaller power consumption.

2018 ◽  
Vol 9 (02) ◽  
pp. 96-102
Author(s):  
Fahrudin Wibowo ◽  
Aulia Burhanudin

Penelitian tentang posisi maupun jarak suatu obyek di dalam ruangan telah banyak dilakukan. Metode trilaterasi adalah salah satu metode yang dapat dipergunakan untuk menghitung nilai estimasi jarak atau posisi suatu obyek di dalam ruangan, berdasarkan nilai RSSI (Received Signal Strength Indication) yang diterima suatu receiver. Namun, nilai RSSI yang diterima tidak dapat stabil dikarenakan sinyal yang diterima oleh receiver sangat dipengaruhi kondisi lingkungan pada ruangan yang pada umumnya memiliki nilai noise yang cukup tinggi. Sehingga dapat berakibat pada nilai estimasi jarak yang diperoleh menjadi kurang akurat. Sehubungan dengan hal tersebut maka setelah dilakukan perhitungan dengan trilaterasi, dilanjutkan dengan menambahkan metode Kalman Filter untuk meningkatkan nilai akurasi. Penelitian ini menggunakan BLE (Bluetooth Low Energy) sebagai transmitter, sedangkan receiver menggunakan smartphone yang sudah ter-install aplikasi untuk menerima nilai RSSI. Setelah menggunakan Kalman Filter diperoleh peningkatan nilai akurasi sebesar 0, 1 meter dari nilai perhitungan trilaterasi


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pavel Kriz ◽  
Filip Maly ◽  
Tomas Kozel

The paper describes basic principles of a radio-based indoor localization and focuses on the improvement of its results with the aid of a new Bluetooth Low Energy technology. The advantage of this technology lies in its support by contemporary mobile devices, especially by smartphones and tablets. We have implemented a distributed system for collecting radio fingerprints by mobile devices with the Android operating system. This system enables volunteers to create radio-maps and update them continuously. New Bluetooth Low Energy transmitters (Apple uses its “iBeacon” brand name for these devices) have been installed on the floor of the building in addition to existing WiFi access points. The localization of stationary objects based on WiFi, Bluetooth Low Energy, and their combination has been evaluated using the data measured during the experiment in the building. Several configurations of the transmitters’ arrangement, several ways of combination of the data from both technologies, and other parameters influencing the accuracy of the stationary localization have been tested.


Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 65
Author(s):  
Siraporn Sakphrom ◽  
Korakot Suwannarat ◽  
Rina Haiges ◽  
Krit Funsian

To avoid problems related to a school bus service such as kidnapping, children being left in a bus for hours leading to fatality, etc., it is important to have a reliable transportation service to ensure students’ safety along journeys. This research presents a high accuracy child monitoring system for locating students if they are inside or outside a school bus using the Internet of Things (IoT) via Bluetooth Low Energy (BLE) which is suitable for a signal strength indication (RSSI) algorithm. The in/out-bus child tracking system alerts a driver to determine if there is a child left on the bus or not. Distance between devices is analyzed for decision making to affiliate the zone of the current children’s position. A simplified and high accuracy machine learning of least mean square (LMS) algorithm is used in this research with model-based RSSI localization techniques. The distance is calculated with the grid size of 0.5 m × 0.5 m similar in size to an actual seat of a school bus using two zones (inside or outside a school bus). The averaged signal strength is proposed for this research, rather than using the raw value of the signal strength in typical works, providing a robust position-tracking system with high accuracy while maintaining the simplicity of the classical trilateration method leading to precise classification of each student from each zone. The test was performed to validate the effectiveness of the proposed tracking strategy which precisely shows the positions of each student. The proposed method, therefore, can be applied for future autopilot school buses where students’ home locations can be securely stored in the system used for references to transport each student to their homes without a driver.


Author(s):  
P.V. Stepanov ◽  

The article analyzes the possibility of using Bluetooth Low Energy technology to solve the problem of identifying and positioning objects. The analysis and comparison of methods for solving the problem of navigation in the room and the problems of identification and positioning of objects is carried out. The features in the methodology, the positioning algorithm and the architecture of the information system are revealed. An adaptive logic for the operation of labels is proposed. The methods of intelligent processing of signals from labels are considered. The method of selective activation of labels and methods of limiting the activation and signal reception zones are described.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4462 ◽  
Author(s):  
Paolo Baronti ◽  
Paolo Barsocchi ◽  
Stefano Chessa ◽  
Fabio Mavilia ◽  
Filippo Palumbo

Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction.


Author(s):  
Smita Sanjay Ambarkar ◽  
Rakhi Dattatraya Akhare

This chapter focuses on the comprehensive contents of various applications and principles related to Bluetooth low energy (BLE). The internet of things (IoT) applications like indoor localization, proximity detection problem by using Bluetooth low energy, and enhancing the sales in the commercial market by using BLE have the same database requirement and common implementation idea. The real-world applications are complex and require intensive computation. These computations should take less time, cost, and battery power. The chapter mainly focuses on the usage of BLE beacons for indoor localization. The motive behind the study of BLE devices is that it is supported by mobile smart devices that augment its application exponentially.


Sign in / Sign up

Export Citation Format

Share Document