Preliminary Electromagnetic Design Expert System for Surface-Mounted Permanent Magnet Brushless Machine

2015 ◽  
Vol 742 ◽  
pp. 464-469
Author(s):  
Hang Zhang ◽  
Yue Jin Zhang

An accurate and fast flowchart of surface-mounted permanent magnet brushless machine (SPMBM) design based on exact analytical method (EAM) rivaling finite element method (FEM) is formally proposed in this paper. It is recognized as a promising expert system for the preliminary electromagnetic design of SPMBM, even to replace the conventional design flowchart using equivalent magnetic circuit method (EMCM). By applying this expert system aiming at the low cogging torque and high power density, a special SPMBM named electronically commutated permanent magnet synchronous DC machine (PMSDCM) with conventional DC armature winding is put forward and verified based on both the simulation and experiment.

2013 ◽  
Vol 655-657 ◽  
pp. 355-358 ◽  
Author(s):  
Ning Ding ◽  
Yu Mei Song ◽  
Lina Wang ◽  
Ding Tong Zhang ◽  
Li Gong Ding

The optimal saving energy permanent magnet lifting chuck has been designed. Working principle of this technology is introduced. Magnetic circuit design is carried out by finite element method (FEM). At the same time, a perfect self-acting driving system has been invented for picking and releasing loads fast and conveniently without using any electricity at all. Industry prototype was manufactured, and it verified that the proposed lifting permanent magnetic chuck was feasible.


2021 ◽  
Vol 12 (4) ◽  
pp. 177
Author(s):  
Yixian Wang ◽  
Hui Yang ◽  
Hao Zheng ◽  
Heyun Lin ◽  
Shukang Lyu

This paper presents a comparative analysis of two parallel hybrid magnet memory machines (PHMMMs) with different permanent magnet (PM) arrangements. The proposed machines are both geometrically characterized by a parallel U-shaped hybrid PM configuration and several q-axis magnetic barriers. The configurations and operating principles of the investigated machines are introduced firstly. The effect of magnet arrangements on the performance of the proposed machines is then evaluated with a simplified magnetic circuit model. Furthermore, the electromagnetic characteristics of the proposed machines are investigated and compared by the finite-element method (FEM). The experiments on one prototype are carried out to validate the FEM results.


2017 ◽  
Vol 11 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Andrzej Waindok ◽  
Bronisław Tomczuk

Abstract The reluctance network model of a permanent magnet tubular motor (PMTM) has been presented in the paper. The reluctance values of the magnetic circuit have been calculated with using analytical expressions. The air gap reluctance has been determined with using both analytical expressions and the finite element method (FEM). Using the calculation model, the flux values coupled with the windings have been obtained and used in the calculations of force value. The calculated results have been compared with numerical and measured ones.


Author(s):  
Jun Zhu ◽  
Shuaihui Li ◽  
Xiangwei Guo ◽  
Huaichun Nan ◽  
Ming Yang

Purpose This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain the expressions of leakage flux coefficient. Design/methodology/approach In this paper, a magnetic circuit model of coreless AFPMSG is proposed. Four kinds of leakage permeances of permanent magnet (PM) are considered, and the expression of no-load leakage flux coefficient is obtained. Solving the integral region of leakage permeances by generator size, which improves the accuracy of the solution. Findings Finite element method and magnetic circuit method are used to obtain the no-load leakage flux coefficient and its variation trend charts with the change of pole arc coefficient, air gap length and PM thickness. The average errors of the two methods are 2.835%, 0.84% and 1.347%, respectively. At the same time, the results of single-phase electromotive force obtained by magnetic circuit method, three dimensional finite element method and prototype experiments are 19.36 V, 18.82 V and 19.09 V, respectively. The results show that the magnetic circuit method is correct in calculating the no-load leakage flux coefficient. Originality/value The special structure of the coreless AFPMSG is considered in the presented equivalent magnetic circuit and equations, and the equations in this paper can be applied for leakage flux evaluating purposes and initial parameter selection of the coreless AFPMSG.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Sign in / Sign up

Export Citation Format

Share Document