Analysis of magnetic force and dynamic characteristic for non-contact permanent magnet linear drive device

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.

Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


2019 ◽  
Vol 38 (2) ◽  
pp. 352-362 ◽  
Author(s):  
Zheng Li ◽  
Qiushuo Chen ◽  
Feihong Yue ◽  
Qunjing Wang

The spherical shell rotor is contained in the multi-degree-of-freedom permanent magnet synchronous motor. When the rated speed of motor is close to the critical speed, the motor will generate multiple resonances, which will affect the normal operation of the motor. The motor rotor must pass through the first-order critical speed and work at the safety range between 1-order and 2-order critical speed. According to the dynamic characteristics of rotor system, a mathematical model of rotor under free state is established, and the result between finite element and analytical methods is comparison. The influence of rotor gyroscope effect on critical speed is analyzed, and the finite element analysis of whether the rigidity of rotor material affects the critical speed is also carried out. The relationship between bending modal and deformation displacement is tested under different rigidity conditions and the stator deformation caused by rotor rotation is analyzed when the stator is filled with different liquids. The relationship between the rotational speed and the amplitude of the spherical rotor is verified by experiments, and the corresponding rules are summarized. The results of the simulation and analysis are referenced by the optimal design of motor.


2012 ◽  
Vol 459 ◽  
pp. 324-328 ◽  
Author(s):  
Ke Dian Wang ◽  
Bin Liu ◽  
Wen Qiang Duan ◽  
Wen Jun Wang

In this paper, ANSYS, a finite element analysis software is used to simulate the change of temperature field in micro-hole processing with millisecond laser, which determines the diameter and depth of the hole drilled. The relationship between processing parameters and the hole size is plotted, so as to achieve size control of a micro-hole processing. Compared with experimental results, simulation is effective for laser processing of micro-hole and can be referenced to choose the best processing parameters.


2013 ◽  
Vol 479-480 ◽  
pp. 390-395
Author(s):  
Yi Chang Wu ◽  
Yi Cheng Hong

The aim of this paper is to analyze the magnetostatic field of disk-type permanent-magnet motors by utilizing the 1-D equivalent magnetic circuit approach and the finite-element method. A 1-D equivalent magnetic circuit model, which is analogous to an electric circuit model, of the disk-type permanent-magnet motor is proposed. The accuracy of the analytical model is verified by a commercial 3-D finite-element analysis (FEA) package. The result shows that the air-gap flux density is in good agreement with an acceptable error of about 1.66%. The presented magnetic circuit approach is not only an accurate technique in predicting the magnetostatic field of disk-type permanent-magnet motors, but also effectively reduces the computing time. It is especially suitable for the preliminary design and optimization of permanent-magnet motors with axial-flux topologies.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2437
Author(s):  
Jonathan Sjölund ◽  
Sandra Eriksson

Electromagnetic modelling of electrical machines through finite element analysis is an important design tool for detailed studies of high resolution. Through the usage of finite element analysis, one can study the electromagnetic fields for information that is often difficult to acquire in an experimental test bench. The requirement for accurate result is that the magnetic circuit is modelled in a correct way, which may be more difficult to maintain for rare earth free permanent magnets with an operating range that is more likely to be close to non-linear regions for the relation between magnetic flux density and magnetic field strength. In this paper, the inclination angles of the magnetic flux density, magnetic field strength and magnetization are studied and means to reduce the inclination angles are investigated. Both rotating and linear machines are investigated in this paper, with different current densities induced in the stator windings. By proper design of the pole shoes, one can reduce the inclination angles of the fields in the permanent magnet. By controlling the inclination angles, one can both enhance the performance of the magnetic circuit and increase the accuracy of simpler models for permanent magnet modelling.


Author(s):  
Andrew Kenny ◽  
Alan Palazzolo

Abstract A magnetic circuit model for a homopolar magnetic bearing is presented. This model connects the fore and aft circumferential flux paths with axial flux paths through the rotor and back iron. The bias flux is provided by a circumferential permanent magnet in the back iron. Results for an analysis using the nonlinear Hyperco50 B-H curve are presented. These results are compared to the results of a three dimensional magnetostatic finite element analysis. The two analytical methods are in good agreement and show that the control flux in this type of bearing follows both circumferential and axial paths.


Author(s):  
Kerem Karakoc ◽  
Afzal Suleman ◽  
Edward J. Park

In this paper, the development of a novel electromechanical brake is presented for automotive applications. The proposed brake consists of multiple rotating disks immersed into a magnetorheological (MR) fluid, and an enclosed electromagnet. When current is applied to the electromagnet, the MR fluid solidifies as its yield stress varies as a function of the magnetic field applied by the electromagnet. This controllable yield stress produces shear friction on the rotating disks, generating the braking torque. An electromagnetic finite element analysis was performed to optimize the magnetic circuit within the MR brake and obtain its design parameters. With these parameters, a prototype MR brake was built; and the experimental results were compared to the finite element simulation results.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


Sign in / Sign up

Export Citation Format

Share Document