DFT Study on Geometric and Electronic Structures Properties of Dye Sensitizers

2015 ◽  
Vol 748 ◽  
pp. 197-200
Author(s):  
Mei Juan Cao ◽  
Zhi Cheng Sun ◽  
Lu Hai Li ◽  
Yuan Bin She ◽  
Zuo Lin Yang ◽  
...  

A series of porphyrin sensitizers with different central metal ions (PMn, PFe, PCo, PNi, PCu, and PZn) have been studied based on density functional theory (DFT). The geometric structure of the dyes was optimized and the frontier molecular orbital were calculated. The result shows that the LUMO levels of PFe, PNi and PZn were much lower than that of PMn, PCo and PCu, which suggest a lower energy barrier for electron transfer from the donor to the acceptor tunneling. Furthermore, the energy gap of HOMO and LUMO for PFe was only 0.81 eV, it indicates a significant red shift of the absorption spectrum. The LUMO of PMn, PNi, PCu and PZn were mainly decocalized on the porphyrin core and the bridge moiety, which was beneficial to electronic transport.

2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


2010 ◽  
Vol 663-665 ◽  
pp. 519-522
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ying Tang Zhang

By Applying Nonequilibrium Green’s Function Formalism Combined First-Principles Density Functional Theory, we Investigate the Electronic Transport Properties of Thiophene and Furan Molecules with Different Quantum Length. the Influence of HOMO-LUMO Gaps and the Spatial Distributions of Molecular Orbitals on the Electronic Transport through the Molecular Device Are Discussed in Detail. the Results Show that the Transport Behaviors Are Determined by the Distinct Electronic Structures of the Molecular Compounds. the Length Dependence of Molecular Conductance Exhibits its Diversity for Different Molecules.


2019 ◽  
Vol 1 (1) ◽  

The present study reports the two step synthesis of a novel oxazolone derivative, 4-((4,6-bis(4-((Z)-(5-oxo-2-phenyloxazol-4(5H)-ylidene) methyl)phenoxy)-1,3,5-triazin-2-yl) oxy) benzaldehyde (CBOZ (5)), containing two oxazolone ring substituted with central triazine nucleus in their structural framework. The structural and spectroscopic properties of synthesized CBOZ (5) were characterized by FTIR, 1HNMR, 13CNMR, and mass spectroscopic analysis. The UV-Vis absorption of CBOZ (5) showed a single absorption band at ~370 nm due to π-π* transition with the estimated energy gap of ~3.02 eV. Cyclic voltammetry analysis revealed that the synthesized CBOZ (5) obtained the HOMO and LUMO values of -5.87 eV and-2.85 eV, respectively. Density functional theory (DFT) studies were carried out to predict the electronic absorption spectra of CBOZ (5) and the obtained values were in excellent agreement with the experimental results.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750036
Author(s):  
Yujie Bai ◽  
Qinfang Zhang ◽  
Fubao Zheng ◽  
Yun Yang ◽  
Qiangqiang Meng ◽  
...  

Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Khalid ◽  
Momina ◽  
Muhammad Imran ◽  
Muhammad Fayyaz ur Rehman ◽  
Ataualpa Albert Carmo Braga ◽  
...  

AbstractConsidering the increased demand and potential of photovoltaic devices in clean, renewable electrical and hi-tech applications, non-fullerene acceptor (NFA) chromophores have gained significant attention. Herein, six novel NFA molecules IBRD1–IBRD6 have been designed by structural modification of the terminal moieties from experimentally synthesized A2-A1-D-A1-A2 architecture IBR for better integration in organic solar cells (OSCs). To exploit the electronic, photophysical and photovoltaic behavior, density functional theory/time dependent-density functional theory (DFT/TD-DFT) computations were performed at M06/6-311G(d,p) functional. The geometry, electrical and optical properties of the designed acceptor molecules were compared with reported IBR architecture. Interestingly, a reduction in bandgap (2.528–2.126 eV), with a broader absorption spectrum, was studied in IBR derivatives (2.734 eV). Additionally, frontier molecular orbital findings revealed an excellent transfer of charge from donor to terminal acceptors and the central indenoindene-core was considered responsible for the charge transfer. Among all the chromophores, IBRD3 manifested the lowest energy gap (2.126 eV) with higher λmax at 734 and 745 nm in gaseous phase and solvent (chloroform), respectively due to the strong electron-withdrawing effect of five end-capped cyano groups present on the terminal acceptor. The transition density matrix map revealed an excellent charge transfer from donor to terminal acceptors. Further, to investigate the charge transfer and open-circuit voltage (Voc), PBDBT donor polymer was blended with acceptor chromophores, and a significant Voc (0.696–1.854 V) was observed. Intriguingly, all compounds exhibited lower reorganization and binding energy with a higher exciton dissociation in an excited state. This investigation indicates that these designed chromophores can serve as excellent electron acceptor molecules in organic solar cells (OSCs) that make them attractive candidates for the development of scalable and inexpensive optoelectronic devices.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 84-93
Author(s):  
M. I. Terebinska ◽  
O. I. Tkachuk ◽  
A. M. Datsyuk ◽  
O. V. Filonenko ◽  
V. V. Lobanov

By the method of density functional theory (B3LYP, 6-31G **) the electronic structures of poly 3,4-ethylenedioxythiophene containing 12 links in charge states 0, +1, +2, +3 and +4 were calculated. It is shown that the oligomer of 12 units is sufficient to reflect the properties of the conductive polymer. To estimate the probability of electron density movement along the polymer chain, the width of the energy gap between NOMO and LUMO was calculated. It is shown that the molecules of oligomers EDOT and SS do not remain parallel to each other after polymerization, but rather, with increasing chain length, the latter gradually bends around the anionic unit SS; the charge distribution in the EDOT and SS oligomer complexes indicates the presence of two separated polarons at the two ends of the chain, and the asymmetry in the charge distribution also implies the presence of a curved spiral structure of the formed complex.


2021 ◽  
Vol 6 (3) ◽  
pp. 107-115
Author(s):  
Fares A. Yasseen ◽  
Faeq A. Al-Temimei

In the present work, geometries, electronic structures, photovoltaic and optical properties have been carried out on a series of structures formation of phthalocyanine and Titanylphthalocyanine dyes, which are replaced by several subgroup. A density functional theory (DFT) approach together with hybrid function (B3LYP) at SDD basis set was used for the ground state properties in the gas phase. The time-dependent density functional theory (TD-DFT)/ B3LYP was used to investigate the excitation properties of new dyes and analyzed the trends in their optical and redox characteristics. Theoretical principles of HOMO and LUMO energy levels of dyes is requisite in analyzing organic solar cells, thus, HOMO, LUMO levels, open circuit voltage, energy gap, light harvestings efficiency, electron regeneration and electron injection have been calculated and discussed. The outcome of the efficiency, the considered dyes explain absorption energy and wavelength properties that correspond to the solar spectrum requirements. According to results, all the considered materials have a good property and possibility of electron injection procedure from the dyes to conduction band of TiO2, PC60BM or PC60BM. As a result, the molecular changes affect the electronic properties of dye molecules for solar cells. Also, a study of new dyes sensitizers showed that designed materials will be excellent sensitizers. Theoretical designing will prae a way for experimentalists to synthesize the efficient sensitizers for solar cells clearer.


Author(s):  
YAMIN WU ◽  
BIN LIAO ◽  
GUOLIANG WANG ◽  
BAOAN Bian

The effect of asymmetric lateral linking groups on the electronic transport is investigated in the biphenyl molecule-based device with gold electrodes with the framework of density functional theory and nonequilibrium Green’s function. The asymmetric lateral linking groups reduce the currents of molecular junctions, and result in the reverse rectifying behavior. The devices with asymmetric lateral linking groups –SH and –SCH3 have maximum rectifying ratios, while the asymmetric lateral linking group –SH and –NH2 cause minimum rectifying ratios. The calculated results suggest that the asymmetric lateral linking group induces the reduced coupling between molecule and right electrode, asymmetric distribution of frontier molecular orbital and asymmetric evolution of the molecular orbital eigenenergies, accounting for the rectifying behavior.


2017 ◽  
Vol 16 (06) ◽  
pp. 1750054 ◽  
Author(s):  
Xiao-Fang Su ◽  
Bo Zhu ◽  
Cai-Xia Wu ◽  
Li-Kai Yan ◽  
Zhong-Min Su

The geometrical and electronic structures of [M6O[Formula: see text]][Formula: see text] (M [Formula: see text] Mo, W, [Formula: see text]; M [Formula: see text] V, Nb, Ta, [Formula: see text]) and their derivatives were investigated by using density functional theory methods. The results indicate that the geometrical structure of [V6O[Formula: see text]][Formula: see text] is not different from other Lindqvist-type anions. The energy gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) (HOMO[Formula: see text]LUMO energy gap) of [V6O[Formula: see text]][Formula: see text] is smaller than those of same charge anions, [Nb6O[Formula: see text]][Formula: see text] and [Ta6O[Formula: see text]][Formula: see text]. In addition, the charge density [Formula: see text] of [V6O[Formula: see text]][Formula: see text] is larger when compared with those of other studied clusters. The investigation on the derivatives shows that the valence of V atom (V[Formula: see text] or V[Formula: see text]) and the methoxy ligand influence the HOMO[Formula: see text]LUMO energy gap and the charge density [Formula: see text] of the studied clusters.


2014 ◽  
Vol 1028 ◽  
pp. 7-13
Author(s):  
Guo Jun Kang ◽  
Chao Song ◽  
Xue Feng Ren

A series of silicon (VI) porphyrins compounds with varying meso substitutions Si (TPP)Cl2 (where X=5,10,15,20-tetraphenylporphyrin), Si (TFP)Cl2 (X=5,10,15,20-tetrafluorenylporphyrin), Si (TQP)Cl2(X=5‚10‚15‚20-tetra (2,3,6,7-tetrahydro-1H,5H-benzo [ij] puinolizine) porphyrin),Si (TMP)Cl2(X=5,10,15,20-tetra (N,N-dimethylphenyl) porphyrin) have been investigated using density functional theory (DFT) to assess the influence of ruffled conformation on the electronic structures, frontier molecular orbital, charge carrier transport, electronic spectra. The electronic structures reveal that all these Si porphyrins display visible ruffling distortion, as the dihedral angle Cα2-N2-N4-Cα4 are ca. 30 ̊. And calculations confirm that ruffed distortion result in higher LUMO energies, lower EA values than corresponding planed Zn porphyrins, especial for similar λhole and λelectron values. These calculations suggest that the ruffled conformation bring about better charge injection and transport, which would broaden the application of distorted porphyrin in several different fields.


Sign in / Sign up

Export Citation Format

Share Document