Investigation on Mechanical Properties of Natural Fiber Composite Using RTM Manufacturing Method

2015 ◽  
Vol 752-753 ◽  
pp. 473-476
Author(s):  
Hyun Bum Park

In this study, an investigation on mechanical properties of flax/vinyl ester natural fiber composite was performed. Vacuum Assisted Resin Transfer Molding (VARTM) manufacturing method was adopted for manufacturing the flax fiber composite specimen. The mechanical properties of the manufactured flax composites were compared with flax composite data cited from some references. Based on this, the experimental data showed that the flax/vinyl ester composite has some advantages when it is applied to environment-friendly structure.

2014 ◽  
Vol 27 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Hyunbum Park ◽  
Changduk Kong ◽  
Jeonghwan Lee ◽  
Ingwon Kim ◽  
Hoyeon Lee

2013 ◽  
Vol 689 ◽  
pp. 382-388
Author(s):  
Ju Seok Oh ◽  
Song Woo Nam ◽  
Sun Woong Choi

The importance of NFC (Natural Fiber Composite) as construction materials is widely accepted all over the world. But it seems that NFC manufacturers have complicated information about the effect of ingredients to their products. Hence systematic study for optimum composition of NFC is needed. This study is aimed to elucidate the effect of ingredients to the mechanical properties of NFC. We devised design of experiments to draw a firm conclusion. The experiments were conducted with polymer processing machines which are widely accepted in polymer processing industries. The result of ANOVA analysis showed that the most important ingredient of NFC is wood flour. And as the length of wood flour increases, the mechanical properties are enhanced. Contrary to wood flour, base resin has little effect to the mechanical properties of NFC. The effect of coupling agent to flexural modulus is not ignorable, but the effect to flexural strength is different from that of flexural modulus.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Govindaraj Ramkumar ◽  
Satyajeet Sahoo ◽  
G. Anitha ◽  
S. Ramesh ◽  
P. Nirmala ◽  
...  

Over the past few years, natural fiber composites have been a strategy of rapid growth. The computational methods have become a significant tool for many researchers to design and analyze the mechanical properties of these composites. The mechanical properties such as rigidity, effects, bending, and tensile testing are carried out on natural fiber composites. The natural fiber composites were modeled by using some of the computation techniques. The developed convolutional neural network (CNN) is used to accurately predict the mechanical properties of these composites. The ground-truth information is used for the training process attained from the finite element analyses below the plane stress statement. After completion of the training process, the developed design is authorized using the invisible data through the training. The optimum microstructural model is identified by a developed model embedded with a genetic algorithm (GA) optimizer. The optimizer converges to conformations with highly enhanced properties. The GA optimizer is used to improve the mechanical properties to have the soft elements in the area adjacent to the tip of the crack.


2021 ◽  
Vol 2 (01) ◽  
pp. 13-23
Author(s):  
Md. Maruf Billah ◽  
Md. Sanaul Rabbi ◽  
Afnan Hasan

From the last few decades, the study of natural fiber composite materials has been gaining strong attention among researchers, scientists, and engineers. Natural fiber composite materials are becoming good alternatives to conventional materials because of their lightweight, high specific strength, low thermal expansion, eco-friendly, low manufacturing cost, nonabrasive and bio-degradable characteristics. It is proven that natural fiber is a great alternative to synthetic fiber in the sector of automobiles, railway, and aerospace. Researchers are developing various types of natural fiber-reinforced composites by combining different types of natural fiber such as jute, sisal, coir, hemp, abaca, bamboo, sugar can, kenaf, banana, etc. with various polymers such as polypropylene, epoxy resin, etc. as matrix material. Based on the application and required mechanical and thermal properties, numerous natural fiber-based composite manufacturing processes are available such as injection molding, compression molding, resin transfer molding, hand lay-up, filament welding, pultrusion, autoclave molding, additive manufacturing, etc. The aim of the paper is to present the developments of various manufacturing processes of natural fiber-based composites and obtained mechanical properties.


2016 ◽  
Vol 713 ◽  
pp. 277-279
Author(s):  
Hyun Bum Park

In this study, structural design and analysis of the automobile bonnet is performed. The flax/vinyl ester composite material is applied for structural design. The Vacuum Assisted Resin Transfer Molding (VARTM) manufacturing method is adopted for manufacturing the flax fiber composite bonnet. A series of flax/vinyl ester composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, preliminary structural design of the automobile bonnet is performed. Finally, this study is to investigate the residual compressive strength of the flax/vinyl ester laminate due to impact damages. Through investigation on compressive strength, design allowable of flax/vinyl ester laminate is determined by the experiment to address design criteria of the composite structure.


10.29007/zhrd ◽  
2018 ◽  
Author(s):  
Jay Khatri ◽  
Haresh Patolia ◽  
Ketul Brahmbhatt

Natural fiber composite materials are gradually becoming more popular due to light weight, low cost, bio degradability, easy to manufacture, lower environmental impact and less energy requirement for manufacturing. These properties of natural fiber make it suitable for automobile, aerospace and other industrial applications. In present study, analysis of mechanical properties like tensile strength, flexural strength, impact strength and Young’s modulus are carried out for various composites. Free vibration characteristics of natural fiber composite beams are also studied analysed. In addition to analytical study, finite element analysis also carried out using ANSYS. In this, the test specimens were modelled in accordance to experimental test specimen and model analysis is performed.


e-Polymers ◽  
2014 ◽  
Vol 14 (5) ◽  
pp. 345-352 ◽  
Author(s):  
Jun Hee Song

AbstractFiber-reinforced composites have favorable structural characteristics such as their light weight, high specific strength, and high stiffness. Vacuum-assisted resin transfer molding (VARTM), used for manufacturing these composites, is relatively simple and provides materials with excellent mechanical properties. In this study, the author investigated the utility of VARTM in improving the performance of a carbon nanofiber (CNF)/carbon fiber composite impregnated with thermosetting resin. Processing parameters were determined, and the integrity of the manufactured composites was assessed. Carbon and glass fibers were used as reinforcing materials in an epoxy resin matrix. CNFs, which have excellent thermal and electrical characteristics, were dispersed in the composites. The pore sizes using the 0°/90°- and 90°/45° types of laminates were about 45 and 50 μm, respectively. The integrated composites produced had low porosity (below 3.7×10-5%).


Sign in / Sign up

Export Citation Format

Share Document