Wind Tunnel Experiments Focused on the Bridge Deck Stability Coefficients

2015 ◽  
Vol 752-753 ◽  
pp. 662-667 ◽  
Author(s):  
Michael Machacek ◽  
Stanislav Pospisil ◽  
Martin Krejsa

An experimental study of an aeroelastic behavior of bridge deck under influence of the wind is carried out in a wind tunnel. Particular attention is paid to seldom analysed influence of the traffic upon the aeroelastic coefficients, known as flutter derivatives, characterising the dynamic response of a bridge deck. The results are compared to those of thin plate with high aspect ratio, which is proven to be aerodynamically stable.

2011 ◽  
Vol 11 (01) ◽  
pp. 73-99 ◽  
Author(s):  
THARACH JANESUPASAEREE ◽  
VIROTE BOONYAPINYO

In this paper, the covariance-driven stochastic subspace identification technique (SSI-COV) was presented to extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this method is that it considers the buffeting forces and responses as inputs rather than as noises. Numerical simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth flows by the free decay and the buffeting tests were used to validate the applicability of the SSI-COV method. Then, the wind tunnel tests of a two-edge girder blunt type of industrial-ring-road (IRR) bridge deck were conducted under smooth and turbulence flows. The flutter derivatives of the thin plate model identified by the SSI-COV technique agree well with those obtained theoretically. The results obtained for the thin plate and the IRR bridge deck are used to validate the reliability and applicability of the SSI-COV technique to various wind tunnel tests and conditions of wind flows. The results also show that for the blunt-type IRR bridge deck, the turbulence wind will delay the onset of flutter, compared with the smooth wind.


2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


Sign in / Sign up

Export Citation Format

Share Document