Determination of Cutting Forces in Oblique Cutting

2015 ◽  
Vol 756 ◽  
pp. 659-664 ◽  
Author(s):  
A.V. Filippov ◽  
E.O. Filippova

This study describes the method of determining cutting force components in oblique turning. The scheme of how the investigations were performed is presented. The characteristic curves of cutting force components vs. thickness of the material removed, tool clearance and tool rake angles are shown. The study presents the data, which have been obtained during the experimental investigations and analytically calculated, on how the cutting forces are subject to changes depending on a cutter angle, cutting depth and feed in oblique turning operations. The analysis of approximation of the experimental results and error check of the theoretical calculations relative to the experimental data are given.

1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


2019 ◽  
Vol 9 (5) ◽  
pp. 842 ◽  
Author(s):  
Danil Pimenov ◽  
Amauri Hassui ◽  
Szymon Wojciechowski ◽  
Mozammel Mia ◽  
Aristides Magri ◽  
...  

In face milling one of the most important parameters of the process quality is the roughness of the machined surface. In many articles, the influence of cutting regimes on the roughness and cutting forces of face milling is considered. However, during flat face milling with the milling width B lower than the cutter’s diameter D, the influence of such an important parameter as the relative position of the face mill towards the workpiece and the milling kinematics (Up or Down milling) on the cutting force components and the roughness of the machined surface has not been sufficiently studied. At the same time, the values of the cutting force components can vary significantly depending on the relative position of the face mill towards the workpiece, and thus have a different effect on the power expended on the milling process. Having studied this influence, it is possible to formulate useful recommendations for a technologist who creates a technological process using face milling operations. It is possible to choose such a relative position of the face mill and workpiece that will provide the smallest value of the surface roughness obtained by face milling. This paper shows the influence of the relative position of the face mill towards the workpiece and milling kinematics on the components of the cutting forces, the acceleration of the machine spindle in the process of face milling (considering the rotation of the mill for a full revolution), and on the surface roughness obtained by face milling. Practical recommendations on the assignment of the relative position of the face mill towards the workpiece and the milling kinematics are given.


2013 ◽  
Vol 797 ◽  
pp. 344-349 ◽  
Author(s):  
Yong Bo Wu ◽  
Jing Ti Niu ◽  
M. Fujimoto ◽  
Mitsuyoshi Nomura

In this paper, a new machining method is proposed for the high efficiency turning of titanium alloy Ti-6Al-4V in which the cutting tool is ultrasonically vibrated. An experimental setup is constructed by installing an ultrasonic cutting unit onto a NC lathe followed by experimental investigations on the fundamental machining characteristics. The results obtained in the current work showed that (1) the cutting force decreases with the increase in the power supplying level (i.e., the ultrasonic vibration (UV) amplitude), e.g., the cutting force components in X-. Y-and Z-directions were decreased by 48%, 45% and 87%, respectively, once the UV has been applied to the tool at the power supplying level of 50%; (2) the cutting marks with knit pattern are formed on work-surface with UV while the parallel distributed cutting marks are generated without UV, and the surface roughness is decreased by up to 10% when the UV is applied at an appropriate power supplying level; (3) the work-surface straightness is improved by 46% once the UV is applied.


Author(s):  
Firat Kafkas

The objective of this study is to obtain the cutting force components on the threading insert. The cutting force data used in the analysis are measured by a three-dimensional dynamic force dynamometer. The AISI 4140 and AISI 4340 low alloy steels are selected for the experiment on the threading and the side cut turning. The inserts used for testing is the TiAlN coated and uncoated grades. LT22NR35ISO type insert is used in the experiment. During the experiments, no cutting fluid and a constant spindle speed is used. The thread pitch and the depth of cut were kept fixed at 3.5 mm and 0.05 mm for the radial feed per pass, respectively. The study emphasizes on the effects on the workpiece material and the cutting tool grade of the cutting force components that occur during the threading. Also, these results are compared with the findings that are obtained during the side cut turning. It is determined that the measured primary cutting and radial forces during the threading are approximately three times bigger than those during the side cut turning, although feed forces during the threading are approximately 30 times lower compared with the side cut turning. The TiAlN coated WC/Co grade shows the best performance with respect to the cutting force components. The specific cutting forces are determined in order to understand the interference of chips that occur during the threading. With the increase in the cumulative radial feed, the corresponding specific cutting forces become higher. It is reasoned that the difference in the specific cutting forces results from the alteration of the interference of the flowing chips. The specific cutting forces decrease in the beginning of the threading and then increases with the cumulative radial feed. The results show that the interference of the chip flow influences the threading force components to a very large extent.


1980 ◽  
Vol 102 (1) ◽  
pp. 12-17
Author(s):  
F. C. Appl ◽  
B. N. Rao ◽  
B. H. Walker

The effects of surfactant solution aluminum chloride on cutting granite rock with a diamond were investigated experimentally. Tests were conducted by cutting on the cylindrical surface of a granite cylinder in a lathe with a single spherically shaped diamond cutting tool. The cutting fluid consisted of various concentrations of aluminum chloride in deionized distilled water. The cutting force components were determined by means of a tool post dynamometer and were recorded continuously during the tests. Diamond wear was determined by periodically photographing the wear flat through an optical miscroscope. Results indicate that cutting forces and diamond wear rate are influenced by the additive. The normal cutting force is maximum at a concentration of 7 × 10−6 molar, and the tangential cutting force is maximum at 3 × 10−6 while the diamond wear rate is minimum at 3 × 10−6 molar. It is also found that there is an effect of concentration on relative tool life for constant depth cutting, but that maximum life occurs at higher levels of concentration.


2014 ◽  
Vol 797 ◽  
pp. 47-52
Author(s):  
Jorge Salguero ◽  
Madalina Calamaz ◽  
Moisés Batista ◽  
Franck Girot ◽  
Mariano Marcos Bárcena

Cutting forces are one of the inherent phenomena and a very significant indicator of the metal cutting process. The work presented in this paper is an investigation of the prediction of these parameters in slotting processes of UNS A92024-T3 (Al-Cu) stacks. So, cutting speed (V) and feed per tooth (fz) based parametric models, for experimental components of cutting force, F(fz,V) have been proposed. These models have been developed from the individual models extracted from the marginal adjustment of the cutting force components to each one of the input variables: F(fz) and F(V).


Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 30-33 ◽  
Author(s):  
Bernhard Karpuschewski ◽  
János Kundrák ◽  
Gyula Varga ◽  
István Deszpoth ◽  
Dmytro Borysenko

Sign in / Sign up

Export Citation Format

Share Document