Dependence of Silicon and Manganese Content in the Weld Metal on the Welding Current and Method of Gas Shielding

2015 ◽  
Vol 756 ◽  
pp. 92-96 ◽  
Author(s):  
Dmitry A. Chinakhov

The influence of the welding current and method of gas shielding in MAG welding on the content of silicon and manganese is considered. Results of study of the welded specimens of steels 45 and 30HGSA when applying welding wire of different formulas and different types of gas shielding (traditional shielding and two-jet shielding) are given. It is established that in MAG welding the value of the welding current and the speed of the gas flow from the welding nozzle have a considerable impact on the chemical composition of the weld metal. The consumable electrode welding under double-jet gas shielding provides the directed gas-dynamics in the welding area and enables controlling the electrode metal transfer and the chemical composition of a weld.

Author(s):  
D A Chinakhov ◽  
E D Chinakhova ◽  
A S Sapozhkov

Author(s):  
D A Chinakhov ◽  
E G Grigorieva ◽  
E I Mayorova ◽  
S A Solodsky ◽  
V F Torosjan

2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Eugenia Pantru ◽  
Gheorghit Jinescu ◽  
Rozalia R�dulescu ◽  
Antoneta Filcenco Olteanu ◽  
Cosmin Jinescu

This paper presents an intensive procedure used for the decontamination of the soils, which were radioactively contaminated by uranium, due to the occurrence of some antropic accidents, in order to limit the area�s pollution. The procedure used for the chemical decontamination of the polluted soils was the washing one and the decontamination degree is comparatively presented depending on the ultrasounds� presence and absence. The lab testes were performed on five types of soils , which were characterized from the granulometric, structural and chemical composition viewpoint, all these aspects represent the main factors, which determine the applied decontamination procedure�s limits and performances correlated with its utilization costs. The decontamination procedure�s kinetics for each type of soils was analyzed, using successively three different types of reagents (water, 0.1 M sulphuric acid solution and chloro-sodic solution � 100 g/L sodium chloride + 10 g/L sodium carbonate in water) for a solid to liquid ratio of 1:2, during 2 h, at a temperature of 20oC in a mechanic stirring system respectively in ultrasounds field. It was observed that the decontamination degree increases with up to 15-20% in case of the ultrasound field utilization comparing to the first case.


Author(s):  
Deepak Bhandari ◽  
Rahul Chhibber ◽  
Lochan Sharma ◽  
Navneet Arora ◽  
Rajeev Mehta

The bimetallic welds are frequently utilized for pipeline transport system of the nuclear power plants. The occurrences of welding defects generally depend on the filler electrode as well as the electrode coatings during shielded metal arc welding process. This study involves the design of austenitic stainless steel welding electrodes for SS304L–SA516 bimetallic welds. The objective of research work includes the novel design of Al2O3–TiO2–CaO–SiO2 coatings by combining two ternary phase systems using extreme vertices mixture design methodology to analyze the effect of key coating constituents on the weld metal chemistry and mechanical properties of the welds. The significant effect of electrode coating constituent CaO on weld metal manganese content is observed which further improves the toughness of bimetallic weld joints. Various regression models have been developed for the weld responses and multi objective optimisation approach using composite desirability function has been adopted for identifying the optimized set of electrode coating compositions. The role of delta ferrite content in promoting the favourable solidification mode has been studied through microstructural examination.


2008 ◽  
Vol 580-582 ◽  
pp. 57-60
Author(s):  
Hee Joon Sung ◽  
Yeon Baeg Goo ◽  
Kyeong Ju Kim ◽  
Kee Young Choi

Chemical composition effect on the weld properties for low temperature steel was evaluated. The alloy elements of interest at the weld metal were Cr and Mo, which come from the steel plate and welding wire, respectively. Both side one run SAW process was carried out in a Ygroove butt joint. Microstructure of the weld metal is strongly dependent on the chemical composition of the steel plate and the welding wire, due to high dilution. The microstructure of the weld metal became fine acicular ferrite by increasing Cr and Mo content because of high hardenability effect. The weld metal having Cr and Mo possessed the highest impact toughness at low temperatures among the weld metals studied. Cr seems to have more effect than Mo on the toughness of the weld metal.


2010 ◽  
Vol 7 (1) ◽  
pp. 67-75
Author(s):  
Hamid Reza Ghazvinloo ◽  
Abbas Honarbakhsh-Raouf ◽  
Nasim Shadfar

Generally, the quality and properties of a weld joint is strongly influenced by welding variables during process. In order to achieve an ideal weld, it is important attention to bead geometry and microstructure evolution of weld metal. The effect of process variables on penetration and microstructure of C-80 steel joints produced by robotic CO2 arc welding was studied in present work. Different samples were produced by employing arc voltages of 23, 25 and 27 V, welding currents of 100, 110 and 120 A and welding speeds of 42, 62 and 82 cm/min. After welding process, geometric measurements were performed on welding specimens and the microstructural evolutions were investigated by optical observations of the weld cross sections. Results were clearly illustrated that increasing in welding current or arc voltage increases the depth of weld penetration. The highest penetration in this research was observed in 62 cm/min welding speed. The metallographic examinations also indicated that the microstructure of weld metal in all of specimens was composed mainly of martensite (M) and residual austenite (A) phases that a portion of martensite phase had been tempered.


2019 ◽  
Vol 91 (2) ◽  
Author(s):  
Paweł Widomski ◽  
Zbigniew Gronostajski ◽  
Marcin Kaszuba ◽  
Jagoda Kowalska ◽  
Mariusz Pawełczyk

In response to the growing need to use wear-resistant layers that increase durability of tools in forging pro-cesses, hybrid layers have been proposed that combine hardfacing with nitriding treatment. This article presents the results of laboratory tests of surface wear-resistant layers made with a new hybrid technology Gas-Shielded Metal Arc surfacing (hardfacing) with ZeroFlow gas nitriding. Specimens made with hardfacing or nitriding were prepared and examined. Analysis covered the thorough microstructure study, EDX chemical composition analysis and microhardness analysis. In experiment, 3 different types of nitrided layers were proposed for alpha, gamma prim and epsilon nitrides in the surface layer. The results of metallographic research in the surface layer was presented. The analysis of chemical composition in the particular overlay welds was performed to determine the content of alloying elements in the particular overlay welds. The susceptibility to nitriding of used weld materials as well as the ability to form particular types of nitrides on selected welded substrates was also tested.


2018 ◽  
Vol 848 ◽  
pp. 756-787 ◽  
Author(s):  
A. Kluwick ◽  
E. A. Cox

The behaviour of steady transonic dense gas flow is essentially governed by two non-dimensional parameters characterising the magnitude and sign of the fundamental derivative of gas dynamics ($\unicode[STIX]{x1D6E4}$) and its derivative with respect to the density at constant entropy ($\unicode[STIX]{x1D6EC}$) in the small-disturbance limit. The resulting response to external forcing is surprisingly rich and studied in detail for the canonical problem of two-dimensional flow past compression/expansion ramps.


Sign in / Sign up

Export Citation Format

Share Document