Combining CaO–SiO2–TiO2 and CaO–SiO2–Al2O3 ternary phase systems for design of bimetallic welds

Author(s):  
Deepak Bhandari ◽  
Rahul Chhibber ◽  
Lochan Sharma ◽  
Navneet Arora ◽  
Rajeev Mehta

The bimetallic welds are frequently utilized for pipeline transport system of the nuclear power plants. The occurrences of welding defects generally depend on the filler electrode as well as the electrode coatings during shielded metal arc welding process. This study involves the design of austenitic stainless steel welding electrodes for SS304L–SA516 bimetallic welds. The objective of research work includes the novel design of Al2O3–TiO2–CaO–SiO2 coatings by combining two ternary phase systems using extreme vertices mixture design methodology to analyze the effect of key coating constituents on the weld metal chemistry and mechanical properties of the welds. The significant effect of electrode coating constituent CaO on weld metal manganese content is observed which further improves the toughness of bimetallic weld joints. Various regression models have been developed for the weld responses and multi objective optimisation approach using composite desirability function has been adopted for identifying the optimized set of electrode coating compositions. The role of delta ferrite content in promoting the favourable solidification mode has been studied through microstructural examination.

2016 ◽  
Vol 880 ◽  
pp. 37-40 ◽  
Author(s):  
Deepak Bhandari ◽  
Rahul Chhibber ◽  
Navneet Arora ◽  
Rajeev Mehta

The bimetallic welds (BMWs) between ferritic low alloy steels and austenitic stainless steel are used widely in steam generators of the power plants. The adoption of these welds in wide industrial applications provides feasible solutions for the flexible design of the products by using each material efficiently and economically. The present paper is an effort towards studying the development of austenitic stainless steel buttering filler material for bimetallic weld joint. The work aims at the design and development of buttering layer electrode coatings for shielded metal arc welding process using extreme vertices design methodology suggested by McLean and Anderson to study the effect of electrode coating ingredients on the buttering layer metal composition and delta ferrite content to prevent solidification cracking.


2015 ◽  
Vol 1115 ◽  
pp. 503-508 ◽  
Author(s):  
Muhammad Sarwar ◽  
Mohd Amin bin Abd Majid

The creep strength-enhanced ferritic (CSEF) steels are undergoing an encouraged use around the world especially in power plant construction. On construction sites, it has always been the target to have no problems in welded joints but premature failures are being encountered. The primary reason of these premature failures is found to be the improper heat treatment that is mandatorily carried out to achieve the required weld hardness. Weld hardness has close relationship with creep strength and ductility of the welded structures. Hence it is important for any weld to achieve certain level of weld hardness. This study aims at ascertaining the importance of Post Welding Heat Treatment (PWHT) in achieving the required hardness in creep-strength enhanced ferritic (CSEF) materials.The study was carried out on the welding of alloy steel ASTM A335 Gr. P-91 with the same base material (ASTM A335 Gr. P-91) by Gas Tungsten Arc Welding (GTAW) process using ER90S-B9 filler wire with pre-heat of 200oC (min) and inter-pass temperature of 300oC (max). After welding, the joints were tested for soundness with Radiography testing. Induction heating was used for heat treatment of P91 pipes during welding and post weld heat treatment. The effect of Post Weld Heat Treatment (PWHT) was investigated on the Weld metal and the Heat Affected Zones (HAZ) by hardness testing. It is perceived that the scattered and higher hardness values, more than 250HB in 2” P91 pipes in the weld metal and in the heat affected zones, can be brought into the lower required level, less than 250HB, with an effective post weld heat treatment at 760°C for 2hrs.It is concluded that PWHT is the most effective way of relieving the welding stresses that are produced due to high heat input in the welding process and to achieve the required level of hardness in the weld as well as in the heat affected zones (HAZ) in thermal power plant main steam piping.


2011 ◽  
Vol 383-390 ◽  
pp. 4697-4701 ◽  
Author(s):  
Deepak Bhandari ◽  
Rahul Chhibber ◽  
Navneet Arora

Bimetallic welds (BMWs) have been a necessity within the steam generators of nuclear power plants, where the heavy section low alloy steel components are usually connected to stainless steel primary piping systems. These welds represent zones with metallurgical discontinuities, which tend to localize the strains and cause failures. The other critical issues which must be taken care of while welding of bimetallic joints include solidification cracking, thermal fatigue and residual stresses in welds. The occurrence and severity of all these problems associated with bimetallic welds depend upon the type of welding process used along with the other variables like welding consumables, heat input etc. In shielded metal arc welding (SMAW), welding electrode consumables/coatings play an important role in deciding the weld metal quality. The development of welding electrode coatings is quite difficult due to very rapid complex reactions taking place during welding and the involvement of many controlled process variables. The present paper is an effort to highlight the general issues and challenges for the systematic and scientific development of welding electrode coatings for bimetallic welds. The experimental procedure contains three sets of coated electrodes having varying ferro-alloys, silica and carbon content. In the first set of electrodes, non-ferrous elements are also introduced into the weld metal through flux addition. Further, the welded joints are subjected to various tests and then evaluated to ascertain their mechanical as well as metallurgical behaviour.


2021 ◽  
Author(s):  
Dawei Zhao ◽  
Yuriy Bezgans ◽  
Nikita Vdonin ◽  
Liudmila Radionova ◽  
Vitaly Bykov

Abstract The profile of the welding bead changes with the welding process parameters during the gas metal arc welding (GMAW) process, the reinforcement disappears and the penetration becomes sunken when the excessive welding heat input is applied. However, little research work is specially planned to cope with the studying of welding bead at these stages. A systematic studying of the relationships among the welding process variables and welding bead geometric features and optimization of the welding quality is presented. The influences of the welding technological parameters (voltage, welding speed, and wire feed speed) on the welding geometry were revealed and the models correlating them were established. The features of the weld bead geometry were composed of top reinforcement width, top reinforcement height, penetration depth, bottom reinforcement width, and bottom reinforcement height. By the desirability function approach, the recommendation of suitable welding parameters to meet the contradicting demands of multiple bead geometric features is fulfilled. The microstructure in different welding regions and mechanical performances of the welding joints produced by the verification test were also studied.


Author(s):  
Abdul Khadeer Sk ◽  
Naseeb Khan

This paper describes a new development of circumferential welding of pipes. Circumferential butt welds are commonly used to join pipes in various industries, including power plants and automobile industries. Magnetically impelled arc butt welding process is a hybrid welding technique. It uses a rotating electric arc as its heat source and is known as efficient method for pipe welding. In this process heat is evolved prior to forging by an arc generated between two coaxially aligned pipes, this arc rapidly rotates along the circumferential edges of the pipes to be welded due to the electromagnetic force exerted by the interaction of arc current and magnetic field generated by the external magnetic system. The entire weld over the full joint thickness is made in one single operation, instead of using several passes as in conventional welding. The main emphasis of this review is to describe the different works carried out in the past which help full for providing the information for the future development of research work. Present study exposes the different works that has been done in the past for improving the weld quality.


Author(s):  
S M Muthu ◽  
R Dinek ◽  
P Mohan ◽  
K Jithesh ◽  
M Arivarasu

This present research work focuses on the hot corrosion performance of the base metal, weldment, and weld metal of A-286 alloy in sodium sulphate (Na2SO4)–5% sodium chloride (NaCl)–7.5% sodium metavanadate (NaVO3) (3SM) atmosphere at 700 °C. A pulsed current gas tungsten arc welding process is employed to make a similar joining of A-286 alloy using the filler material ERNiCrMo-3. The corrosion kinetics of the specimens has been determined using the thermo-gravimetric technique. The phase compositions of the reaction products are studied by X-ray diffraction, and the surface morphology of the scales is explored by scanning electron microscope analysis. The corroded samples are subjected to a cross-sectional study to ensure the corrosion attack and scales thickness using a SEM with elemental mapping technique. The result indicates that weldment showed better corrosion resistance than bare metal. A thick oxide scale could be found in the bare metal specimen than the weld metal. In the case of base metal, the formation of non-adherent and porous iron (III) oxide (Fe2O3) leads to rapid corrosion. The weight gain of weldment is about 1.96 and 1.13 times less than bare alloy and weld metal.


Author(s):  
Deepak Bhandari ◽  
Rahul Chhibber ◽  
Navneet Arora ◽  
Rajeev Mehta

The bimetallic welds between ferritic low alloy steels and austenitic stainless steels are widely used in the heat piping transport systems of nuclear power plants for connecting the heavy section low alloy steel components with those of high temperature stainless steel pipes. The operating experience of major nuclear power plant components has recently shown that bimetallic joints can jeopardize the plant availability and safety because of increased incidences of failure. In shielded metal arc welding process, the occurrence and severity of weld defects mainly depend upon the type of electrode filler wire and the electrode coating ingredients used. The use of nickel based filler metals is no longer considered as the final solution for unexpected failures of bimetallic welds due to incidences of hot cracking. In the present paper, an attempt has been made to design and develop an intermediate electrode based on CaO–CaF2–SiO2 ternary phase diagram system and nickel as an additional electrode coating ingredient using mild steel as a filler wire for the bimetallic weld joint. The extreme vertices methodology has been used to design 21 electrode coating formulations. The quadratic regression models for weld metal chemistry, ultimate tensile strength, impact toughness, macrohardness, diffusible hydrogen content, and corrosion rate in terms of electrode coating ingredients, have been developed and checked for adequacy using analysis of variance. The work aims at studying the individual as well as combined effect of electrode coating ingredients on the measured weld responses and microstructures of the weld. Also, the electrode coating formulations suggesting multiobjective optimized solutions have been proposed.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Author(s):  
Frederick W. Brust ◽  
R. E. Kurth ◽  
D. J. Shim ◽  
David Rudland

Risk based treatment of degradation and fracture in nuclear power plants has emerged as an important topic in recent years. One degradation mechanism of concern is stress corrosion cracking. Stress corrosion cracking is strongly driven by the weld residual stresses (WRS) which develop in nozzles and piping from the welding process. The weld residual stresses can have a large uncertainty associated with them. This uncertainty is caused by many sources including material property variations of base and welds metal, weld sequencing, weld repairs, weld process method, and heat inputs. Moreover, often mitigation procedures are used to correct a problem in an existing plant, which also leads to uncertainty in the WRS fields. The WRS fields are often input to probabilistic codes from weld modeling analyses. Thus another source of uncertainty is represented by the accuracy of the predictions compared with a limited set of measurements. Within the framework of a probabilistic degradation and fracture mechanics code these uncertainties must all be accounted for properly. Here we summarize several possibilities for properly accounting for the uncertainty inherent in the WRS fields. Several examples are shown which illustrate ranges where these treatments work well and ranges where improvement is needed. In addition, we propose a new method for consideration. This method consists of including the uncertainty sources within the WRS fields and tabulating them within tables which are then sampled during the probabilistic realization. Several variations of this process are also discussed. Several examples illustrating the procedures are presented.


Sign in / Sign up

Export Citation Format

Share Document