Experiment and Elastic-Plastic Modelling of the IPN160 Beam

2015 ◽  
Vol 769 ◽  
pp. 331-335
Author(s):  
Jakub Vasek ◽  
Oldrich Sucharda

The paper compares the numerical models of and experiments with a beam. The purpose is to evaluate the nonlinear material model of a steel structure. The steel is modelled as an ideal elastic-plastic material. The FEM and eight-node isoparametric finite elements are considered in the analysis. The 3D calculations use different material constants and several approaches are being tested in order to create the computational models. The calculations are performed in the software application developed by our university.

Author(s):  
Boris Jeremić ◽  
James Putnam ◽  
Kallol Sett ◽  
Dana Humphrey ◽  
Stacey Patenaude

1977 ◽  
Vol 99 (1) ◽  
pp. 39-53 ◽  
Author(s):  
D. Bushnell ◽  
G. D. Galletly

Several aluminum and mild steel torispherical heads were tested by Galletly and by Kirk and Gill and subsequently analyzed by Bushnell with use of the BOSOR5 computer program. The thinnest specimens buckled at pressures for which part of the toroidal knuckle was stressed well beyond the yield point. The analysis includes large deflection effects, nonlinear material behavior, and meridional variation of the thickness. The calculated strains in the thicker specimens agree reasonably well with the test results, but the calculated prebuckling strains in the thinnest specimens are generally greater than the values measured in the torodial knuckle after the onset of plastic flow. Reasonably good agreement between test and theory is obtained for the buckling pressures of aluminum specimens, but the calculated buckling pressures for mild steel specimens are much lower than the observed values, a discrepancy that is attributed to circumferentially varying thickness and possible inability of the analytical model of the elastic-plastic material to predict accurately the state of stress in the toroidal knuckle where loading is nonproportional once yielding has occurred.


1986 ◽  
Vol 108 (2) ◽  
pp. 127-132 ◽  
Author(s):  
K. A. Stelson

An improved adaptive pressbrake control algorithm is described. The problem is to control the punch reversal position of the press so that the final unloaded angle of the bend remains unchanged in the presence of material property and thickness variations of the sheets or plates being bent. Pressbrake control algorithms that use punch force-displacement data to identify thickness and material property variations have shown promise. However, since previous controllers have been based on an elastic-plastic material model, the parts have been overbent. In this paper, a controller based on an elastic, power-law strain-hardening model is proposed. Experiments have shown that the model eliminates the tendency to overbend the parts that is present in the elastic-plastic algorithm.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Zhanghai (John) Wang ◽  
Samuel Rodriguez

In fitness for service (FFS) assessments, one issue that people often encounter is a corroded area near a structural discontinuity. In this case, the formula-based sections of the FFS standard are incapable of evaluating the component without resorting to finite element analysis (FEA). In this paper, an FEA-based technical approach for evaluating FFS assessments using an elastic-plastic material model and reformed criteria is proposed.


1996 ◽  
Vol 31 (1) ◽  
pp. 25-33 ◽  
Author(s):  
S J Hardy ◽  
M K Pipelzadeh

This paper describes the results of a study of the elastic–plastic behaviour of short flat bars with projections subjected to monotonic and cyclic axial loading using finite element analysis. The results are complementary to similar results for (a) shear loading and (b) combined axial and shear loading. Six geometries are considered and elastic–plastic stress and strain data for both local and remote restraints are presented. These geometries and associated restraints result in elastic stress concentration factors in the range 1.69–4.96. A simple bilinear elastic–plastic material model is assumed and the results are normalized with respect to material properties so that they can be applied to geometrically similar components made from other materials which can be represented by the same material models.


2015 ◽  
Vol 60 (3) ◽  
pp. 1935-1940 ◽  
Author(s):  
A. Milenin ◽  
R. Kuziak ◽  
V. Pidvysots'kyy ◽  
P. Kustra ◽  
Sz. Witek ◽  
...  

Abstract Residual stresses in hot-rolled strips are of practical importance when the laser cutting of these strip is applied. The factors influencing the residual stresses include the non uniform distribution of elastic-plastic deformations, phase transformation occurring during cooling and stress relaxation during rolling and cooling. The latter factor, despite its significant effect on the residual stress, is scarcely considered in the scientific literature. The goal of the present study was development of a model of residual stresses in hot-rolled strips based on the elastic-plastic material model, taking into account the stress relaxation. Residual stresses in hot-rolled strips were evaluated using the FEM model for cooling in the laminar cooling line and in the coil. Relaxation of thermal stresses was considered based on the creep theory. Coefficients of elastic-plastic material model and of the creep model for steels S235 and S355 were obtained from the experiments performed on the Gleeble 3800 simulator for the temperatures 35-1100°C. Experiments composed small tensile deformations of the sample (0.01-0.02) and subsequent shutter speed without removing the load. Model of the thermal deformation during cooling was obtained on the basis of the dilatometric tests at cooling rates of 0.057°C/s to 60°C/s. Physical simulations of the cooling process were performed to validate the model. Samples were fixed in the simulator Gleeble 3800, then heated to the temperature of 1200°C and cooled to the room temperature at a rate of 1-50°C/s. Changes of stresses were recorded. Good agreement between calculated and experimental values of stresses was observed. However, due to neglecting the effect of stress relaxation the stress at high temperatures was overestimated. Due to the change of their stress sign during the unloading process the resulting residual stresses were underestimated. Simulation of residual stresses in rolling and cooling were performed on the basis of the developed model. It was shown that the effect of stress relaxation and phase transformations on the distribution of residual stresses in strips is essential and neglecting these factors could lead to an underestimation of residual stresses.


Sign in / Sign up

Export Citation Format

Share Document