Stochastic Continuum Damage Mechanics Using Spring Lattice Models

2015 ◽  
Vol 784 ◽  
pp. 350-357 ◽  
Author(s):  
Sohan Kale ◽  
Seid Koric ◽  
Martin Ostoja-Starzewski

In this study, a planar spring lattice model is used to study the evolution of damage variabledLin disordered media. An elastoplastic softening damage constitutive law is implemented which introduces a cohesive length scale in addition to the disorder-induced one. The cohesive length scale affects the macroscopic response of the lattice with the limiting cases of perfectly brittle and perfectly plastic responses. The cohesive length scale is shown to affect the strength-size scaling such that the strength increases with increasing cohesive length scale for a given size. The formation and interaction of the microcracks is easily captured by the inherent discrete nature of the model and governs the evolution ofdL. The proposed method provides a way to extract a mesoscale dependent damage evolution rule that is linked directly to the microstructural disorder.

2010 ◽  
Vol 123-125 ◽  
pp. 527-530
Author(s):  
Hossein Hosseini-Toudeshky ◽  
Bijan Mohammadi

To predict the progressive damages including the large delamination growth in composite laminates, a new interface de-cohesive constitutive law is developed which is compatible with 3D continuum damage mechanics (CDM). To avoid the difficulties of 3D mesh generation and 3D interface modeling between the layers, the interface element is implemented in the Reddy’s full layer-wise plate theory. An angle-ply laminate is analyzed to evaluate the developed CDM+Interface procedure in edge delamination initiation and evolution at final stage of CDM damage progress.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Jayesh R. Jain ◽  
Somnath Ghosh

This paper develops a microscopic homogenization based continuum damage mechanics (HCDM) model framework for fiber reinforced composites undergoing interfacial debonding. It is an advancement over the 2D HCDM model developed by Raghavan and Ghosh (2005, “A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding,” Mech. Mater., 37(9), pp. 955–979), which does not yield accurate results for nonproportional loading histories. The present paper overcomes this shortcoming through the introduction of a principal damage coordinate system (PDCS) in the HCDM representation, which evolves with loading history. The material behavior is represented as a continuum constitutive law involving a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. The current work also extends the model of Raghavan and Ghosh to incorporate damage in 3D composites through functional forms of the fourth order damage tensor in terms of macroscopic strain components. The model is calibrated by homogenizing the micromechanical response of the representative volume element (RVE) for a few strain histories. This parametric representation can significantly enhance the computational efficiency of the model by avoiding the cumbersome strain space interpolations. The proposed model is validated by comparing the CDM results with homogenized micromechanical response of single and multiple fiber RVEs subjected to arbitrary loading history.


1985 ◽  
Vol 64 ◽  
Author(s):  
E. P. Chen

ABSTRACTThe dynamic fracture of concrete in tension is studied by applying a continuum damage model developed by the author and his coworkers [1–3]. In this model, the degree of damage in concrete corresponds to the fraction of concrete volume that has been tension relieved, and tensile microcracking has been taken as the damage mechanism. In compression, the concrete is assumed to respond in an elastic/perfectly plastic manner. Strain-rate effects have been explicitly included in the model. Accumulation of damage in the material is reflected by the progressive weakening of the material stiffness. Examples involving center- and edge-cracked plate specimens subjected to the action of step and ramp loads are used to demonstrate the material responses predicted by the model. The bulk pressure versus strain relationships at locations close to the crack tip clearly show strainsoftening behavior. The damage tends to localize around the crack and its extent in the specimen is dependent upon both the crack geometry and the loading type. These results are presented and their implications are discussed.


2009 ◽  
Vol 113 (1144) ◽  
pp. 371-383 ◽  
Author(s):  
S. Ghosh ◽  
J. R. Jain

Abstract This paper develops a 3D homogenisation based continuum damage mechanics (HCDM) model for fibre-reinforced composites undergoing micromechanical damage under cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fibre-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage co-ordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterised as a macroscopic internal variable. Cyclic damage parameters are introduced in the monotonic HCDM model to describe the material degradation due to fatigue. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensor. The HCDM model parameters are calibrated from homogenisation of micromechanical solutions of the RVE for a few representative cyclic strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenisation. Finally, the potential of cyclic HCDM model as a design tool is demonstrated through macro-micro analysis of cyclic damage progression in composite structures.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


2017 ◽  
Vol 38 (1) ◽  
pp. 25-30
Author(s):  
Yan-Feng Li ◽  
Zhisheng Zhang ◽  
Chenglin Zhang ◽  
Jie Zhou ◽  
Hong-Zhong Huang

Abstract This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.


Sign in / Sign up

Export Citation Format

Share Document