Homogenization Based 3D Continuum Damage Mechanics Model for Composites Undergoing Microstructural Debonding

2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Jayesh R. Jain ◽  
Somnath Ghosh

This paper develops a microscopic homogenization based continuum damage mechanics (HCDM) model framework for fiber reinforced composites undergoing interfacial debonding. It is an advancement over the 2D HCDM model developed by Raghavan and Ghosh (2005, “A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding,” Mech. Mater., 37(9), pp. 955–979), which does not yield accurate results for nonproportional loading histories. The present paper overcomes this shortcoming through the introduction of a principal damage coordinate system (PDCS) in the HCDM representation, which evolves with loading history. The material behavior is represented as a continuum constitutive law involving a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. The current work also extends the model of Raghavan and Ghosh to incorporate damage in 3D composites through functional forms of the fourth order damage tensor in terms of macroscopic strain components. The model is calibrated by homogenizing the micromechanical response of the representative volume element (RVE) for a few strain histories. This parametric representation can significantly enhance the computational efficiency of the model by avoiding the cumbersome strain space interpolations. The proposed model is validated by comparing the CDM results with homogenized micromechanical response of single and multiple fiber RVEs subjected to arbitrary loading history.

2009 ◽  
Vol 113 (1144) ◽  
pp. 371-383 ◽  
Author(s):  
S. Ghosh ◽  
J. R. Jain

Abstract This paper develops a 3D homogenisation based continuum damage mechanics (HCDM) model for fibre-reinforced composites undergoing micromechanical damage under cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fibre-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage co-ordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterised as a macroscopic internal variable. Cyclic damage parameters are introduced in the monotonic HCDM model to describe the material degradation due to fatigue. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensor. The HCDM model parameters are calibrated from homogenisation of micromechanical solutions of the RVE for a few representative cyclic strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenisation. Finally, the potential of cyclic HCDM model as a design tool is demonstrated through macro-micro analysis of cyclic damage progression in composite structures.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2015 ◽  
Vol 784 ◽  
pp. 350-357 ◽  
Author(s):  
Sohan Kale ◽  
Seid Koric ◽  
Martin Ostoja-Starzewski

In this study, a planar spring lattice model is used to study the evolution of damage variabledLin disordered media. An elastoplastic softening damage constitutive law is implemented which introduces a cohesive length scale in addition to the disorder-induced one. The cohesive length scale affects the macroscopic response of the lattice with the limiting cases of perfectly brittle and perfectly plastic responses. The cohesive length scale is shown to affect the strength-size scaling such that the strength increases with increasing cohesive length scale for a given size. The formation and interaction of the microcracks is easily captured by the inherent discrete nature of the model and governs the evolution ofdL. The proposed method provides a way to extract a mesoscale dependent damage evolution rule that is linked directly to the microstructural disorder.


2010 ◽  
Vol 123-125 ◽  
pp. 527-530
Author(s):  
Hossein Hosseini-Toudeshky ◽  
Bijan Mohammadi

To predict the progressive damages including the large delamination growth in composite laminates, a new interface de-cohesive constitutive law is developed which is compatible with 3D continuum damage mechanics (CDM). To avoid the difficulties of 3D mesh generation and 3D interface modeling between the layers, the interface element is implemented in the Reddy’s full layer-wise plate theory. An angle-ply laminate is analyzed to evaluate the developed CDM+Interface procedure in edge delamination initiation and evolution at final stage of CDM damage progress.


Sign in / Sign up

Export Citation Format

Share Document