Multi-Phase Modelling of Concrete Affected by Sulfate Attack

2015 ◽  
Vol 784 ◽  
pp. 86-94
Author(s):  
Nicola Cefis ◽  
Claudia Comi

This study focuses on the modeling of damage in concrete subject to sulfate attack. The concrete is described as a multiphase material made of a solid skeleton, a fluid phase including water and air and an expanding phase, which exerts a pressure capable of damaging the concrete surrounding the reactive sites. The moisture content is computed through a simplified diffusion model, then a reactive-diffusion model allows for the computation of the expansive products of the reaction occurring between the aluminates of the cement paste and the incoming sulfate ions.

2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Aliyu Bello A. ◽  
Arshad Ahmad ◽  
Adnan Ripin ◽  
Olagoke Oladokun

The moisture contents of powders is an important parameter that affects the quality and commercial value of spray dried products. The utility of predicted moisture content values from two droplet drying models were compared with experimental data for spray dried pineapple juice, using the Ranz-Marshal and its modified variants for the heat and mass transfer correlations. The droplet Diffusion model, using the Zhifu correlation, gave estimates with errors of about 8% at 165 oC, 9% at 171 oC, 26% at 179 oC and 2% at 185 oC. The Ranz-Marshal correlation also gave comparable results with this model while results using the Downing and modified Ranz-Marshall correlations widely diverged. The Energy balance model predicted completely dried juice particles, and short drying times, in contrast to the experimental data. The small error sizes of the Diffusion model improves on the wide error sizes of an earlier process model, making is useful as a first approximation choice, for spray drier design and simulation, especially for juices under comparable operating conditions.


2019 ◽  
Vol 123 ◽  
pp. 105766 ◽  
Author(s):  
Yushan Gu ◽  
Renaud-Pierre Martin ◽  
Othman Omikrine Metalssi ◽  
Teddy Fen-Chong ◽  
Patrick Dangla

2020 ◽  
Vol 262 ◽  
pp. 120803
Author(s):  
Tassiane A. Oliveira ◽  
Igor M. Pinkoski ◽  
Mariana O.G.P. Bragança ◽  
André Assmann ◽  
Isabela C. Oliveira ◽  
...  

1994 ◽  
Vol 370 ◽  
Author(s):  
D.P. Bentz ◽  
Nicos. S. Martys ◽  
P. Stutzman ◽  
M. S. Levenson ◽  
E.J. Garboczi ◽  
...  

AbstractX-ray microtomography can be used to generate three-dimensional 5123 images of random materials at a resolution of a few micrometers per voxel. This technique has been used to obtain an image of an ASTM C109 mortar sample that had been exposed to a sodium sulfate solution. The three-dimensional image clearly shows sand grains, cement paste, air voids, cracks, and needle-like crystals growing in the air voids. Volume fractions of sand and cement paste determined from the image agree well with the known quantities. Implications for the study of microstructure and proposed uses of X-ray microtomography on cement-based composites are discussed.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1336 ◽  
Author(s):  
Weifeng Chen ◽  
Bei Huang ◽  
Yuexue Yuan ◽  
Min Deng

Damage to concrete structures with gypsum-contaminated aggregate occurs frequently. Aggregates in much of the southern part of China are contaminated with gypsum. Therefore, in this study, the effects of using different quantities of gypsum-contaminated aggregate on the expansion and compressive strength of concrete were investigated over a period of one year. Two groups of concrete were designed with the gypsum-contaminated aggregate containing different parts of fine and coarse aggregate, respectively. The SO3 contents were 0%, 0.5%, 1%, 1.5%, 3%, 5%, and 7% by weight of aggregate. X-ray diffraction (XRD), thermogravimetry (TG), and differential scanning calorimetry (DSC) were used to analyze the change in mineral composition over time. The microstructure was also studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results showed that significant expansion and great loss in compressive strength did not occur in concrete if the content of SO3 lay below 1.5% and 3% in fine and coarse aggregates, respectively. The concentration of sulfate ions in concrete was not enough to form new a phase of gypsum. During the process of internal sulfate attack, the content of gypsum decreased and the content of ettringite increased. Ettringite was the main reason for the expansion damage of concrete. Additionally, the fracture mode of internal sulfate attack on concrete was the crack extension from gypsum to paste; finally, the aggregate separated from the paste.


2011 ◽  
Vol 243-249 ◽  
pp. 4683-4686 ◽  
Author(s):  
Chao Sun ◽  
Jian Kang Chen

Based on Fick’s second law and the damage evolution due to sulfate attack, a new model is proposed to analyze the diffusion of sulfate ions in concrete. The relation between erosion damage and erosion time, as well as the concentration of sulfate ions is firstly investigated by virtue of the ultrasonic experimental results. Furthermore, the damage evolution is treated as the increase of porosity, and a new nonlinear differential equation on the diffusion of sulfate ions is established by substituting such an increasing porosity into Fick’s law. The nonlinear diffusion equation is then solved by numerical method. It is found that the erosion damage can significantly affect the diffusion of sulfate ions in concrete.


2016 ◽  
Vol 827 ◽  
pp. 275-278
Author(s):  
Martin Vyšvařil ◽  
Markéta Rovnaníková

The degradation of concrete due to ingress of sulfate ions from the environment plays an important role in the durability of concrete constructions, especially in sewage collection systems where concrete sewer pipes are exposed to sulfates from waste water and from biogenic activity of bacteria. During this process the pH of the surface of concrete sewer pipes is reduced and it may lead to the steel depassivation and results in the corrosion of steel reinforcement. Damage due to sulfate interaction can result in the cracking and softening, with loss of strength of concrete. This paper is focused on the sulfate attack on fine-grained concrete where the effect of one-year contact of 0.5% H2SO4, and 5% Na2SO4 on changes of pH and content of sulfates in 7 types of concrete has been analyzed. It was found that after one year of sulfate attack on concrete, significant growth of content of sulfates is observed in the lowermost layer of the samples. Samples treated by 5% Na2SO4 contain slightly more sulfates in the upper layers than samples treated by sulfuric acid. The reduction in pH of aqueous leaches occurred in all layers of the samples. However, even in the lower layers of the samples, the reduction of pH below 9.5 did not turn up (except for SRS sample), and thus the conditions for the depassivation of reinforcement were not met.


Sign in / Sign up

Export Citation Format

Share Document