solid skeleton
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 3)

Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Hanming Gu ◽  
Jun Ni ◽  
Yanghua Wang

Biot’s theory of poroelasticity describes seismic waves propagating through fluid-saturated porous media, so-called two-phase media. The classic Biot’s theory of poroelasticity considers the wave dissipation mechanism being the friction of relative motion between the fluid in the pores and the solid rock skeleton. However, within the seismic frequency band, the friction has a major influence only on the slow P-wave and has an insignificant influence on the fast P-wave. In order to represent the intrinsic viscoelasticity of the solid skeleton, we incorporate a generalized viscoelastic wave equation into Biot’s theory for the fluid-saturated porous media. The generalized equation which unifies the pure elastic and viscoelastic cases is constituted by a single viscoelastic parameter, presented as the fractional order of the wavefield derivative in the compact form of the wave equation. The generalized equation that includes the viscoelasticity appropriately describes the dissipation characteristics of the fast P-wave. Plane-wave analysis and numerical solutions of the proposed wave equation reveal that (1) the viscoelasticity in the solid skeleton causes the energy attenuation on the fast P-wave and the slow P-wave at the same order of magnitude, and (2) the generalized viscoelastic wave equation effectively describes the dissipation effect of the waves propagating through the fluid-saturated porous media.


Residual soils have different properties and behavior from sedimentary soils. Aspects related to the processes of origin and formation directly impact these geotechnical particularities. One of the characteristic properties of this material is cementation. Cementation is an additional resistance that occurs in the solid skeleton due to weathering actions on these materials. In a residual soil profile, different cementation levels occur between the grains, these differences are due to different types of matrix rock, decomposition mechanisms involved in the process and anthropic actions. This article evaluated changes in the degree of cementation in residual soil horizons using the Marchetti Seismic Dilatometer (SDMT). The research was carried out in a residual gneiss soil in the State of Santa Catarina. The evaluation of the cementation degree was based on the relationships obtained with the Go (shear modulus with small strain) and other field geotechnical indices. The results show that the interpretation of the correlations from the results obtained by the SPT (Standardized Penetration Test), CPT (Cone Penetration Test) and SDMT tests allow the identification of layer boundaries with different degrees of cementation in residual gneiss soils. . In the present work, the limits between the saprolitic and the lateritic layers were identified and, finally, it was concluded that the studied residual soil presents a low level of cementation between the particles.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2418
Author(s):  
Konstantina Papachristopoulou ◽  
Nikolaos A. Vainos

Systolic nanofabrication is demonstrated via conformal downsizing of three-dimensional micropatterned monolithic master-casts made of extremely nanoporous aerogel and xerogel materials. The porous solid skeleton collapses by thermal treatment, generating miniaturized replicas, which preserve the original stereometric forms and incorporate minified nanoscale patterns. Paradigmatic holographic and biomimetic nanoarchitectures are conformally downsized by ~4×, yielding subwavelength surface features of less than ~150 nm. The operations demonstrate the super-resolution capabilities of this alternative concept and its potential evolution to an innovative nanotechnology of the future.


Author(s):  
Andrey V. Dimaki ◽  
Evgeny V. Shilko

AbstractWe give a brief description of the results obtained by Prof. Sergey G. Psakhie and his colleagues in the field of theoretical studies of mechanical response, including fracture, of permeable fluid-saturated materials. Such materials represent complex systems of interacting solid and liquid phases. Mechanical response of such a medium is determined by processes taking place in each phase as well as their interaction. This raised a need of developing a new theoretical approach of simulation of such media—the method of hybrid cellular automaton that allowed describing stress-strain fields in solid skeleton, transfer of a fluid in crack-pore volume and influence of fluid pressure on the stress state of the solid phase. The new method allowed theoretical estimation of strength of liquid-filled permeable geomaterials under complex loading conditions. Governing parameters controlling strength of samples under uniaxial loading and shear in confined conditions were identified.


2020 ◽  
Vol 10 (21) ◽  
pp. 7539
Author(s):  
Yu Ding ◽  
Jia-sheng Zhang ◽  
Yu Jia ◽  
Xiao-bin Chen ◽  
Xuan Wang ◽  
...  

The fluid seepage in saturated zone of subgrade promotes the migration of fine particles in the filler, resulting in the change of pore structure and morphology of the filler and the deformation of solid skeleton, which affects the fluid seepage characteristics. Repeatedly, the muddy interlayer, mud pumping, and other diseases are finally formed. Based on the theory of two-phase seepage, the theory of porous media seepage, and the principle of effective stress in porous media, a two-phase fluid-solid coupling mathematical model in saturated zone of subgrade considering the effects of fine particles migration is established. The mathematical model is numerically calculated with the software COMSOL Multiphysics®. The two-phase seepage characteristics and the deformation characteristics of the solid skeleton in saturated zone of the subgrade are studied. The research results show that the volume fraction of fine particles first increases then decreases and finally becomes stable with the increase of time, due to the continuous erosion and migration of fine particles in saturated zone of the subgrade. The volume fraction of fine particles for the upper part of the subgrade is larger than that for the lower part of the subgrade. The porosity, the velocity of fluid, the velocity of fine particles, and the permeability show a trend of increasing first and then stabilizing with time; the pore water pressure has no significant changes with time. The vertical displacement increases first and then decreases slightly with the increase of time, and finally tends to be stable. For the filler with a larger initial volume fraction of fine particles, the maximum value of the volume fraction of fine particles caused by fluid seepage is larger, and the time required to reach the maximum value is shorter. It can be concluded that the volume fraction of fine particles in the subgrade filler should be minimized on the premise that the filler gradation meets the requirements of the specification in actual engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yue Pan ◽  
Zhiming Zhao ◽  
Liu He ◽  
Guang Wu

In the current paper, the deformation behaviours of rocks during compression are studied by testing 10 groups of sandstone samples with different porosity characteristics. According to the energy theory, the rock material was divided into two parts: solid skeleton and voids. A statistical damage-based approach was adopted to establish a nonlinear statistical damage constitutive model. The validity of the statistical damage constitutive model is verified by the test data. The statistical damage constitutive model performs well in each stage of rock compression before failure. For different types of rocks, different confining pressures, and different water contents, the statistical damage constitutive model fits well. This model can be applied to most types of rocks and in most engineering environments.


Author(s):  
Yu Ding ◽  
Jia-sheng Zhang ◽  
Yu Jia ◽  
Xiao-bin Chen ◽  
Xuan Wang ◽  
...  

The fluid seepage in local-saturated zone of subgrade promotes the migration of fine particles in the filler, resulting in the change of pore structure and morphology of the filler and the deformation of solid skeleton, which affects the fluid seepage characteristics. Repeatedly, the muddy interlayer, mud pumping and other diseases are finally formed. Based on the theory of two-phase seepage, the theory of porous media seepage, and the principle of effective stress in porous media, a two-phase fluid-solid coupling mathematical model in local-saturated zone of subgrade considering the effect of fine particles migration is established. The mathematical model is numerically calculated with the software COMSOL Multiphysics○R, the two-phase seepage characteristics and the deformation characteristics of the solid skeleton in local-saturated zone of the subgrade are studied. The research results show that due to the continuous erosion and migration of fine particles in local-saturated zone of the subgrade, the volume fraction of fine particles first increases then decreases and finally becomes stable with the increase of time. And the volume fraction of fine particles for the upper part of the subgrade is larger than that for the lower part of the subgrade. The porosity, the velocity of fluid, the velocity of fine particles, and the permeability show a trend of increasing first and then stabilizing with time; the pore water pressure has no significant changes with time. The vertical displacement increase first and then decrease slightly with the increase of time, and finally tend to be stable. For a filler with a larger initial volume fraction of fine particles, the maximum value of the volume fraction of fine particles caused by fluid seepage is larger, and the time required to reach the maximum value is shorter. It can be concluded that in actual engineering, the volume fraction of fine particles in the subgrade filler should be minimized on the premise that the filler gradation meets the requirements of the specification.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Liming Yang ◽  
Junhui Luo ◽  
Weiyun Chen ◽  
Yumin Mou

The time-dependent behaviour of saturated soils under static and dynamic loading is generally attributed to the flow-dependent and viscous behaviour of pore fluid. However, the intrinsic energy dissipative effects from the flow-independent viscoelastic behaviour of solid skeleton are not always considered. In this study, the effect of flow-independent viscoelastic behaviour on the seismic amplification of ground soil in vertical and horizontal directions is studied based on a two-phase poroviscoelastic model. A generalized Kelvin–Voigt model is used to define the effective stress in the soils, and the compressibilities of both solid skeleton and pore fluid are considered. The seismic-induced dynamic displacements are analytically derived and are shown to depend on soil layer thickness, soil properties, and ground motion parameters. The formulation neglecting the viscoelastic behaviour of solid skeleton could overestimate both the vertical and horizontal motion amplifications at the surface of ground soil. In addition, the seismic responses of viscoelastic soils are demonstrated to be closely related to the saturation state of surface soil.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1797
Author(s):  
Mengtao Cao ◽  
Shunde Yin

Solution mining for glauberite salt rock is a long-term process that takes several years to several decades. Therefore, deposit deformations and subsidence of ground surfaces are time-dependent deformation problems that should consider the effect of water dissolution. In order to investigate the time-dependent deformation characteristics of glauberite salt rock, tri-axial time-dependent deformation tests were conducted under the condition of 4 MPa confining pressure and 5 MPa axial pressure with infiltration pressures of 3, 2, 1, and 0 MPa, respectively, and the micro-CT scan system was used to scan the glauberite specimens before and after the experiment in order to study the fracture evolution inside the specimen, and a damage constitutive model was established to fit the time-dependent deformation curves based on the damage mechanics and effective stress principle. To simulate the solution mining process, the time-dependent deformation process of glauberite salt rock was divided into three stages: hydraulic connection stage, water-saturated stage, and drainage stage. The results demonstrate that the hydraulic connection time for glauberite salt rock decreases with increasing infiltration pressure. The time-dependent deformations of the specimens at the hydraulic connection and saturated-water stages are significantly affected by the effective stress and continual mineral dissolution. At the drainage stage, the softening degree of the solid skeleton mechanical properties, which is caused by the dissolution effect and infiltration pressure loading history, decides the deformation of glauberite salt rock. In addition, the degree of softening inside glauberite salt rock caused by dissolution becomes more severe with increasing infiltration pressure using the micro-CT scan technology. Lastly, the time-dependent damage constitutive model is able to describe the tri-axial time-dependent deformation behavior of glauberite salt rock, and the variations of time-dependent deformation parameters further indicate the damage evolution of the solid skeleton mechanical properties of glauberite caused by infiltration pressure and dissolution effect.


2020 ◽  
Vol 57 (3) ◽  
pp. 311-336 ◽  
Author(s):  
Mario Manassero

The osmotic, hydraulic and self-healing efficiency of bentonite-based barriers for the containment of subsoil pollutants is governed not only by the intrinsic chemicophysical parameters of the bentonite, i.e., the solid phase density, ρsk; the total specific surface, S; the surface density of the electric charge, σ; and the Stern layer thickness, dStern, and fraction, fStern, but also by the chemicomechanical fabric parameters that quantify the structure or texture of the solid skeleton, such as the micro, em, and nano, en, void ratios; the average number of platelets or lamellae per tactoid, Nl,AV; and the solid skeleton effective electric charge concentration, [Formula: see text]. In turn, the fabric parameters are controlled by state parameters, such as the total void ratio, e; and the salt concentration of the equilibrium solution, cs. A theoretical framework has been developed to describe the relationships between the aforementioned intrinsic, state, and fabric parameters for a bentonite barrier and its performance parameters: the hydraulic conductivity, k; the effective diffusion coefficient, [Formula: see text]; the chemico-osmotic efficiency coefficient, ω; and the osmotic swelling pressure, usw. The proposed theoretical hydrochemicomechanical model has been validated through comparison with a large amount of experimental results.


Sign in / Sign up

Export Citation Format

Share Document